A parks and recreation department is constructing a new bike path. The path will be parallel to the railroad tracks shown and pass through the parking area al the point (4, 5). Write an equation that represents the path.

A parks and recreation department is constructing a new bike path. The path will be parallel to the railroad tracks shown and pass through the parking area al the point (4, 5). Write an equation that represents the path.

Question
Modeling data distributions
asked 2021-03-07
A parks and recreation department is constructing a new bike path. The path will be parallel to the railroad tracks shown and pass through the parking area al the point \(\displaystyle{\left({4},\ {5}\right)}.\) Write an equation that represents the path.

Answers (1)

2021-03-08
Calculation:
As the given in the figure the railroad track and passes through the points \(\displaystyle{\left({11},\ {4}\right)}\) and \(\displaystyle{\left({8},\ {0}\right)}.\) Therefore slope is \(\displaystyle{\frac{{{0}-{4}}}{{{8}-{11}}}}={\frac{{-{4}}}{{-{3}}}}={\frac{{{4}}}{{{3}}}}.\)
As the new bike path is parallel to rail road track so slope are equal. Slope of new bike path is \(\displaystyle{\frac{{{4}}}{{{3}}}}.\)
Equation of new bike path is:
\(\displaystyle{y}-{5}={\frac{{{4}}}{{{3}}}}{\left({x}-{4}\right)}\)
\(\displaystyle{3}{y}-{15}={4}{x}-{16}\)
\(\displaystyle{4}{x}-{3}{y}={16}-{15}\)
\(\displaystyle{4}{x}-{3}{y}={1}\)
Thus, equation of the bike path is \(\displaystyle{4}{x}\ -\ {3}{y}={1}.\)
0

Relevant Questions

asked 2021-02-25
We will now add support for register-memory ALU operations to the classic five-stage RISC pipeline. To offset this increase in complexity, all memory addressing will be restricted to register indirect (i.e., all addresses are simply a value held in a register; no offset or displacement may be added to the register value). For example, the register-memory instruction add x4, x5, (x1) means add the contents of register x5 to the contents of the memory location with address equal to the value in register x1 and put the sum in register x4. Register-register ALU operations are unchanged. The following items apply to the integer RISC pipeline:
a. List a rearranged order of the five traditional stages of the RISC pipeline that will support register-memory operations implemented exclusively by register indirect addressing.
b. Describe what new forwarding paths are needed for the rearranged pipeline by stating the source, destination, and information transferred on each needed new path.
c. For the reordered stages of the RISC pipeline, what new data hazards are created by this addressing mode? Give an instruction sequence illustrating each new hazard.
d. List all of the ways that the RISC pipeline with register-memory ALU operations can have a different instruction count for a given program than the original RISC pipeline. Give a pair of specific instruction sequences, one for the original pipeline and one for the rearranged pipeline, to illustrate each way.
Hint for (d): Give a pair of instruction sequences where the RISC pipeline has “more” instructions than the reg-mem architecture. Also give a pair of instruction sequences where the RISC pipeline has “fewer” instructions than the reg-mem architecture.
asked 2021-05-10
A 12,600kg railroad car travels along on a level frictionlesstrack with a constant speed of 18.0 m/s. A 5,350kg load,initially at rest is dropped onto the car. What will be thecars new speed?
asked 2020-10-23
1. Find each of the requested values for a population with a mean of \(? = 40\), and a standard deviation of \(? = 8\) A. What is the z-score corresponding to \(X = 52?\) B. What is the X value corresponding to \(z = - 0.50?\) C. If all of the scores in the population are transformed into z-scores, what will be the values for the mean and standard deviation for the complete set of z-scores? D. What is the z-score corresponding to a sample mean of \(M=42\) for a sample of \(n = 4\) scores? E. What is the z-scores corresponding to a sample mean of \(M= 42\) for a sample of \(n = 6\) scores? 2. True or false: a. All normal distributions are symmetrical b. All normal distributions have a mean of 1.0 c. All normal distributions have a standard deviation of 1.0 d. The total area under the curve of all normal distributions is equal to 1 3. Interpret the location, direction, and distance (near or far) of the following zscores: \(a. -2.00 b. 1.25 c. 3.50 d. -0.34\) 4. You are part of a trivia team and have tracked your team’s performance since you started playing, so you know that your scores are normally distributed with \(\mu = 78\) and \(\sigma = 12\). Recently, a new person joined the team, and you think the scores have gotten better. Use hypothesis testing to see if the average score has improved based on the following 8 weeks’ worth of score data: \(82, 74, 62, 68, 79, 94, 90, 81, 80\). 5. You get hired as a server at a local restaurant, and the manager tells you that servers’ tips are $42 on average but vary about \($12 (\mu = 42, \sigma = 12)\). You decide to track your tips to see if you make a different amount, but because this is your first job as a server, you don’t know if you will make more or less in tips. After working 16 shifts, you find that your average nightly amount is $44.50 from tips. Test for a difference between this value and the population mean at the \(\alpha = 0.05\) level of significance.
asked 2021-02-10
Two light sources of identical strength are placed 8 m apart. An object is to be placed at a point P on a line ? parallel to the line joining the light sources and at a distance d meters from it (see the figure). We want to locate P on ? so that the intensity of illumination is minimized. We need to use the fact that the intensity of illumination for a single source is directly proportional to the strength of the source and inversely proportional to the square of the distance from the source.
asked 2021-02-17
A square loop of copper wire is initially placed perpendiclar to the lines of a constant magnetic field of \(\displaystyle{5}\times{10}^{{3}}\) T.The area enclosed by the loop is 0.2 square meter. the loopis then turned through an angle \(\displaystyle{90}^{\circ}\) so thatthe plane of the loop is parallel to the field lines. the turntakes 0.1 second. what is the average emf induced in the loop during the turn?
asked 2021-02-19

Two snowcats tow a housing unit to a new location at McMurdo Base, Antarctica, as shown in the figure. The sum of the forces \(\displaystyle{F}_{{A}}\) and \(\displaystyle{F}_{{B}}\) exerted on the unit by the horizontal cables is parallel to the line L, and \(\displaystyle{F}_{{A}}={4200}\) N. Determine \(\displaystyle{F}_{{B}}\)? Determine the magnitude of \(\displaystyle{F}_{{A}}+{F}_{{B}}\)?
asked 2021-05-16
Consider the curves in the first quadrant that have equationsy=Aexp(7x), where A is a positive constant. Different valuesof A give different curves. The curves form a family,F. Let P=(6,6). Let C be the number of the family Fthat goes through P.
A. Let y=f(x) be the equation of C. Find f(x).
B. Find the slope at P of the tangent to C.
C. A curve D is a perpendicular to C at P. What is the slope of thetangent to D at the point P?
D. Give a formula g(y) for the slope at (x,y) of the member of Fthat goes through (x,y). The formula should not involve A orx.
E. A curve which at each of its points is perpendicular to themember of the family F that goes through that point is called anorthogonal trajectory of F. Each orthogonal trajectory to Fsatisfies the differential equation dy/dx = -1/g(y), where g(y) isthe answer to part D.
Find a function of h(y) such that x=h(y) is the equation of theorthogonal trajectory to F that passes through the point P.
asked 2021-05-09
The dominant form of drag experienced by vehicles (bikes, cars,planes, etc.) at operating speeds is called form drag. Itincreases quadratically with velocity (essentially because theamount of air you run into increase with v and so does the amount of force you must exert on each small volume of air). Thus
\(\displaystyle{F}_{{{d}{r}{u}{g}}}={C}_{{d}}{A}{v}^{{2}}\)
where A is the cross-sectional area of the vehicle and \(\displaystyle{C}_{{d}}\) is called the coefficient of drag.
Part A:
Consider a vehicle moving with constant velocity \(\displaystyle\vec{{{v}}}\). Find the power dissipated by form drag.
Express your answer in terms of \(\displaystyle{C}_{{d}},{A},\) and speed v.
Part B:
A certain car has an engine that provides a maximum power \(\displaystyle{P}_{{0}}\). Suppose that the maximum speed of thee car, \(\displaystyle{v}_{{0}}\), is limited by a drag force proportional to the square of the speed (as in the previous part). The car engine is now modified, so that the new power \(\displaystyle{P}_{{1}}\) is 10 percent greater than the original power (\(\displaystyle{P}_{{1}}={110}\%{P}_{{0}}\)).
Assume the following:
The top speed is limited by air drag.
The magnitude of the force of air drag at these speeds is proportional to the square of the speed.
By what percentage, \(\displaystyle{\frac{{{v}_{{1}}-{v}_{{0}}}}{{{v}_{{0}}}}}\), is the top speed of the car increased?
Express the percent increase in top speed numerically to two significant figures.
asked 2021-02-14
In the arrangement shown in Figure P14.40, an object of mass,m = 2.0 kg, hangs from a cordaround a light pulley. The length of the cord between pointP and the pulley is L = 2.0 m.(a) When thevibrator is set to a frequency of 145Hz, a standing wave with six loops is formed. What must be thelinear mass density of the cord in kg/m? (b) How many loops (ifany) will result if m is changed to 2.88 kg?
(c) How many loops (if any) will result if m is changed to72.0 kg?
asked 2021-02-14
Dayton Power and Light, Inc., has a power plant on the Miami Riverwhere the river is 800 ft wide. To lay a new cable from the plantto a location in the city 2 mi downstream on the opposite sidecosts $180 per foot across the river and $100 per foot along theland.
(a) Suppose that the cable goes from the plant to a point Q on theopposite side that is x ft from the point P directly opposite theplant. Write a function C(x) that gives the cost of laying thecable in terms of the distance x.
(b) Generate a table of values to determin if the least expensivelocation for point Q is less than 2000 ft or greater than 2000 ftfrom point P.
...