Step 1
For the given problem let us assume ,
D = event that people have diabetes
N = event that people have no diabetes
C = event that people diagnosed having diabetes
F = event that people diagnosed not having diabetes
Step 2
Now from the given information in the problem, we calculate the probabilities as shown,
Step 3
1. The probability that a randomly selected adult over 40 doesn't have diabetes and is diagnosed as having diabetes (such diagnoses are called "false positives") is P(N and C) and is calculated as shown,
Step 4
Answer. 1: The probability that a randomly selected adult over 40 doesn't have diabetes and is diagnosed as having diabetes (such diagnoses are called "false positives") is 0.018
Step 5
2. The probability that a randomly selected adult of 40 is diagnosed as not having diabetes is P(F) and is calculated as shown,
Step 6
Answer.2: The probability that a randomly selected adult of 40 is diagnosed as not having diabetes is 0.9027
Step 7
3. The probability that a randomly selected adult over 40 actually has diabetes, given that he/she is diagnosed as not having diabetes (such diagnoses are called "false negatives") is and is calculated as shown,
Step 8
Answer. 3: The probability that a randomly selected adult over 40 actually has diabetes, given that he/she is diagnosed as not having diabetes (such diagnoses are called "false negatives") is 0.0051.