Step 1

Given:

\(\displaystyle{p}{\left({x}\right)}={x}^{{2}}+{5}{x}+{6}\)

WKT

Step 2

WKT

To find the zeroes \(\displaystyle{p}{\left({x}\right)}={0}\)

\(\displaystyle{x}^{{{2}}}+{5}{x}+{6}={0}\)

\(\displaystyle{x}{\left({x}+{3}\right)}+{2}{\left({x}+{3}\right)}={0}\)

\(\displaystyle{\left({x}+{3}\right)}{\left({x}+{2}\right)}={0}\)

\(\displaystyle{x}=-{3},\ {x}=-{2}\)

The zeroes of \(\displaystyle{p}{\left({x}\right)}\) are -3 and -2

Given:

\(\displaystyle{p}{\left({x}\right)}={x}^{{2}}+{5}{x}+{6}\)

WKT

Step 2

WKT

To find the zeroes \(\displaystyle{p}{\left({x}\right)}={0}\)

\(\displaystyle{x}^{{{2}}}+{5}{x}+{6}={0}\)

\(\displaystyle{x}{\left({x}+{3}\right)}+{2}{\left({x}+{3}\right)}={0}\)

\(\displaystyle{\left({x}+{3}\right)}{\left({x}+{2}\right)}={0}\)

\(\displaystyle{x}=-{3},\ {x}=-{2}\)

The zeroes of \(\displaystyle{p}{\left({x}\right)}\) are -3 and -2