Find the coordinate vector of *A* relative to the basis *S* = {*A* 1, *A* 2, *A* 3, *A* 4 }.

(*A*)*S* = (_,_,_,_)

Fatoom Alsaadi
2022-03-31
Answered

Find the coordinate vector of *A* relative to the basis *S* = {*A* 1, *A* 2, *A* 3, *A* 4 }.

(*A*)*S* = (_,_,_,_)

You can still ask an expert for help

user_27qwe

Answered 2022-04-21
Author has **229** answers

$\left[\begin{array}{cc}3& 0\\ 5& 0\end{array}\right]+\left[\begin{array}{cc}3& 3\\ 3& 3\end{array}\right]+\left[\begin{array}{cc}0& 1\\ 1& 1\end{array}\right]+\left[\begin{array}{cc}0& 0\\ 5& 5\end{array}\right]+\left[\begin{array}{cc}0& 0\\ 0& 1\end{array}\right]$

Add the corresponding elements.

$\left[\begin{array}{cc}3+3& 0+3\\ 5+3& 0+3\end{array}\right]+\left[\begin{array}{cc}0& 1\\ 1& 1\end{array}\right]+\left[\begin{array}{cc}0& 0\\ 5& 5\end{array}\right]+\left[\begin{array}{cc}0& 0\\ 0& 1\end{array}\right]$

Simplify each element of the matrix $\left[\begin{array}{cc}3+3& 0+3\\ 5+3& 0+3\end{array}\right]$.

Simplify $3+3$.

$\left[\begin{array}{cc}6& 0+3\\ 5+3& 0+3\end{array}\right]+\left[\begin{array}{cc}0& 1\\ 1& 1\end{array}\right]+\left[\begin{array}{cc}0& 0\\ 5& 5\end{array}\right]+\left[\begin{array}{cc}0& 0\\ 0& 1\end{array}\right]$

Simplify $0+3$.

$\left[\begin{array}{cc}6& 3\\ 5+3& 0+3\end{array}\right]+\left[\begin{array}{cc}0& 1\\ 1& 1\end{array}\right]+\left[\begin{array}{cc}0& 0\\ 5& 5\end{array}\right]+\left[\begin{array}{cc}0& 0\\ 0& 1\end{array}\right]$

Simplify $5+3$.

$\left[\begin{array}{cc}6& 3\\ 8& 0+3\end{array}\right]+\left[\begin{array}{cc}0& 1\\ 1& 1\end{array}\right]+\left[\begin{array}{cc}0& 0\\ 5& 5\end{array}\right]+\left[\begin{array}{cc}0& 0\\ 0& 1\end{array}\right]$

Simplify $0+3$.

$\left[\begin{array}{cc}6& 3\\ 8& 3\end{array}\right]+\left[\begin{array}{cc}0& 1\\ 1& 1\end{array}\right]+\left[\begin{array}{cc}0& 0\\ 5& 5\end{array}\right]+\left[\begin{array}{cc}0& 0\\ 0& 1\end{array}\right]$

Add the corresponding elements.

$\left[\begin{array}{cc}6+0& 3+1\\ 8+1& 3+1\end{array}\right]+\left[\begin{array}{cc}0& 0\\ 5& 5\end{array}\right]+\left[\begin{array}{cc}0& 0\\ 0& 1\end{array}\right]$

Simplify each element of the matrix $\left[\begin{array}{cc}6+0& 3+1\\ 8+1& 3+1\end{array}\right]$.

Simplify $6+0$.

$\left[\begin{array}{cc}6& 3+1\\ 8+1& 3+1\end{array}\right]+\left[\begin{array}{cc}0& 0\\ 5& 5\end{array}\right]+\left[\begin{array}{cc}0& 0\\ 0& 1\end{array}\right]$

Simplify $3+1$.

$\left[\begin{array}{cc}6& 4\\ 8+1& 3+1\end{array}\right]+\left[\begin{array}{cc}0& 0\\ 5& 5\end{array}\right]+\left[\begin{array}{cc}0& 0\\ 0& 1\end{array}\right]$

Simplify $8+1$.

$\left[\begin{array}{cc}6& 4\\ 9& 3+1\end{array}\right]+\left[\begin{array}{cc}0& 0\\ 5& 5\end{array}\right]+\left[\begin{array}{cc}0& 0\\ 0& 1\end{array}\right]$

Simplify $3+1$.

$\left[\begin{array}{cc}6& 4\\ 9& 4\end{array}\right]+\left[\begin{array}{cc}0& 0\\ 5& 5\end{array}\right]+\left[\begin{array}{cc}0& 0\\ 0& 1\end{array}\right]$

Add the corresponding elements.

$\left[\begin{array}{cc}6+0& 4+0\\ 9+5& 4+5\end{array}\right]+\left[\begin{array}{cc}0& 0\\ 0& 1\end{array}\right]$

Simplify each element of the matrix $\left[\begin{array}{cc}6+0& 4+0\\ 9+5& 4+5\end{array}\right]$.

Simplify $6+0$.

$\left[\begin{array}{cc}6& 4+0\\ 9+5& 4+5\end{array}\right]+\left[\begin{array}{cc}0& 0\\ 0& 1\end{array}\right]$

Simplify $4+0$.

$\left[\begin{array}{cc}6& 4\\ 9+5& 4+5\end{array}\right]+\left[\begin{array}{cc}0& 0\\ 0& 1\end{array}\right]$

Simplify $9+5$.

$\left[\begin{array}{cc}6& 4\\ 14& 4+5\end{array}\right]+\left[\begin{array}{cc}0& 0\\ 0& 1\end{array}\right]$

Simplify $4+5$.

$\left[\begin{array}{cc}6& 4\\ 14& 9\end{array}\right]+\left[\begin{array}{cc}0& 0\\ 0& 1\end{array}\right]$

Add the corresponding elements.

$\left[\begin{array}{cc}6+0& 4+0\\ 14+0& 9+1\end{array}\right]$

Simplify each element of the matrix $\left[\begin{array}{cc}6+0& 4+0\\ 14+0& 9+1\end{array}\right]$.

Simplify $6+0$.

$\left[\begin{array}{cc}6& 4+0\\ 14+0& 9+1\end{array}\right]$

Simplify $4+0$.

$\left[\begin{array}{cc}6& 4\\ 14+0& 9+1\end{array}\right]$

Simplify $14+0$.

$\left[\begin{array}{cc}6& 4\\ 14& 9+1\end{array}\right]$

Simplify $9+1$.

$\left[\begin{array}{cc}6& 4\\ 14& 10\end{array}\right]$ - Answer

asked 2020-12-28

Two blocks with masses 4.00 kg and 8.00 kg are connected by string and slide down a 30.0 degree inclined plane. The coefficient of kinetic friction between the 4.00-kg block and the plane is 0.25; that between the 8.00-kg block and the plane is 0.35.

a) Calculate the acceleration of each block

b) Calculate the tension in the string

c) What happens if the positions of the block are reversed, so that the 4.00-kg block is above the 8.00-kg block?

asked 2021-02-13

A rocket is launched at an angle of 53 degrees above the horizontal with an initial speed of 100 m/s. The rocket moves for 3.00 s a long its initial line of motion with an acceleration of 30.0 m/s/s. At this time, its engines fail and the rocket proceeds to move as a projectile. Find:

a) the maximum altitude reached by the rocket

b) its total time of flight

c) its horizontal range.

asked 2020-11-22

A 0.145 kg baseball pitched at 39.0 m/s is hit on a horizontal line drive straight back toward the pitcher at 52.0 m/s. If the contact time between bat and ball is $1.00\times {10}^{-3}$ s,calculate the average force between the bat and ball during contest.

asked 2021-02-19

Two snowcats tow a housing unit to a new location at McMurdo Base, Antarctica, as shown in the figure. The sum of the forces $F}_{A$ and $F}_{B$ exerted on the unit by the horizontal cables is parallel to the line L, and ${F}_{A}=4200$ N. Determine $F}_{B$? Determine the magnitude of $F}_{A}+{F}_{B$?

asked 2022-03-28

Determine the smallest positive value of x(in degrees) for which:

$\mathrm{tan}(x+{100}^{\circ})=\mathrm{tan}(x+{50}^{\circ})\mathrm{tan}\left(x\right)\mathrm{tan}(x-{50}^{\circ})$

asked 2021-01-08

To find the equation:

asked 2022-04-12

How do you solve the differential equation $\frac{dy}{dt}=2y-10$ ?