Let left{v_{1}, v_{2}, dots, v_{n}right} be a basis for a vector space V.

Let left{v_{1}, v_{2}, dots, v_{n}right} be a basis for a vector space V.

Question
Transformation properties
asked 2021-03-07

Let \(\left\{v_{1},\ v_{2}, \dots,\ v_{n}\right\}\) be a basis for a vector space V. Prove that if a linear transformation \(\displaystyle{T}\ :\ {V}\rightarrow\ {V}\) satisfies \(\displaystyle{T}{\left({v}_{{{1}}}\right)}={0}\ \text{for}\ {i}={1},\ {2},\dot{{s}},\ {n},\) then T is the zero transformation.
Getting Started: To prove that T is the zero transformation, you need to show that \(\displaystyle{T}{\left({v}\right)}={0}\) for every vector v in V.
(i) Let v be an arbitrary vector in V such that \(\displaystyle{v}={c}_{{{1}}}\ {v}_{{{1}}}\ +\ {c}_{{{2}}}\ {v}_{{{2}}}\ +\ \dot{{s}}\ +\ {c}_{{{n}}}\ {v}_{{{n}}}.\)
(ii) Use the definition and properties of linear transformations to rewrite \(\displaystyle{T}\ {\left({v}\right)}\) as a linear combination of \(\displaystyle{T}\ {\left({v}_{{{1}}}\right)}\).
(iii) Use the fact that \(\displaystyle{T}\ {\left({v}_{{i}}\right)}={0}\) to conclude that \(\displaystyle{T}\ {\left({v}\right)}={0}\), making T the zero tranformation.

Answers (1)

2021-03-08

Step 1
Let \(\left\{v_{1},\ v_{2}, \dots,\ v_{n}\right\}\) be the basis for a vector space.
Define the map, \(\displaystyle{T}\ :\ {V}\rightarrow{V}\ \text{such that}\ {T}\ {\left({v}_{{{i}}}\right)}={0}\ \text{for}\ {i}={1},\ {2},\dot{{s}},\ {n}.\)
To prove, the above defined map is a linear transformation.
Step 2
\(\text{Let}\ v_{1},\ v_{2}\ \in\ V\ \text{and}\ r\ \in \mathbb{F}\ \text{a scalar.}\)
\(\displaystyle\Rightarrow\ {T}\ {\left({v}_{{{1}}}\right)}={0}={T}{\left({v}_{{{2}}}\right)}\)
\(\displaystyle\text{As}\ {v}_{{{1}}}\ {v}_{{{2}}}\in\ {V}\Rightarrow\ {v}_{{{1}}}\ +\ {v}_{{{2}}}\ \in\ {V},\ {r}{v}_{{{1}}}\ \in\ {V}\)
\(\displaystyle\Rightarrow\ {T}\ {\left({v}_{{{1}}}\ +\ {v}_{{{2}}}\right)}={0}\)
\(\displaystyle={0}\ +\ {0}\)
\(\displaystyle={T}\ {\left({v}_{{{1}}}\right)}\ +\ {T}\ {\left({v}_{{{2}}}\right)}\)
\(\displaystyle\text{Also}\)
\(\displaystyle{T}\ {\left({r}{v}_{{{1}}}\right)}={0}={r}{.0}\)
\(\displaystyle\Rightarrow\ {T}\ {\left({r}{v}_{{{1}}}\right)}={r}{T}\ {\left({v}_{{{1}}}\right)}\)
Therefore, the above defined map is a linear transformation and this is true for every vector in V.
Step 3
Let v be an arbitrary vector in V such that \(\displaystyle{v}={c}_{{{1}}}\ {v}_{{{1}}}\ +\ {c}_{{{2}}}\ {v}_{{{2}}}\ +\ \dot{{s}}\ +\ {c}_{{{n}}}\ {v}_{{{n}}}\)
Where, \(\displaystyle{C}_{{{i}}}\) 's are scalars.
The vector v can be written as such linear combination since \(\left\{v_{1},\ v_{2}, \dots,\ v_{n}\right\}\) is the basis for a vector space V.
Apply the transformation T on both sides and use the fact that T is linear transformation.
\(\displaystyle\Rightarrow\ {T}\ {\left({v}\right)}={T}\ {\left({c}_{{{1}}}{v}_{{{1}}}\ +\ {c}_{{{2}}}{v}_{{{2}}}\ +\ \dot{{s}}\ +\ {c}_{{{n}}}{v}_{{{n}}}\right)}\)
\(\displaystyle={T}\ {\left({c}_{{{1}}}{v}_{{{1}}}\right)}\ +\ {T}{\left({c}_{{{2}}}{v}_{{{2}}}\right)}\ +\ \dot{{s}}\ +\ {T}{\left({c}_{{{n}}}{v}_{{{n}}}\right)}\)
\(\displaystyle={c}_{{{1}}}{T}\ {\left({v}_{{{1}}}\right)}\ +\ {c}_{{{2}}}{T}\ {\left({v}_{{{2}}}\right)}\ +\ \dot{{s}}\ +\ {c}_{{{n}}}{T}\ {\left({v}_{{{n}}}\right)}\)
\(\displaystyle\text{Also,}\ {T}{\left({v}_{{{1}}}\right)}={T}{\left({v}_{{{2}}}\right)}=\dot{{s}}\ ={T}{\left({v}_{{{n}}}\right)}={0}\)
\(\displaystyle\Rightarrow\ {T}{\left({v}\right)}={c}_{{{1}}}\ {\left({0}\right)}\ +\ {c}_{{{2}}}\ {\left({0}\right)}\ +\ \dot{{s}}\ +\ {c}_{{{n}}}\ {\left({0}\right)}\)
\(\displaystyle\Rightarrow\ {T}{\left({v}\right)}={0}\ +\ {0}\ +\ \dot{{s}}\ +\ {0}\)
\(\displaystyle\Rightarrow\ {T}{\left({v}\right)}={0}\)
Which gives, the transformation T is zero tranformation.

0

Relevant Questions

asked 2020-12-25

For the V vector space contains all \(\displaystyle{2}\times{2}\) matrices. Determine whether the \(\displaystyle{T}:{V}\rightarrow{R}^{{1}}\) is the linear transformation over the \(\displaystyle{T}{\left({A}\right)}={a}\ +\ {2}{b}\ -\ {c}\ +\ {d},\) where \(A=\begin{bmatrix}a & b \\c & d \end{bmatrix}\)

asked 2021-02-01

To show:
\(\displaystyle{a}\ {<}\ {\frac{{{a}+{b}}}{{{2}}}}\ {<}\ {b}\)
Given information:
a and b are real numbers.

asked 2020-11-27

Angles A and B are supplementary.
If \(\displaystyle{m}\angle{A}={78}°\) what is \({m}\angle{B}\)

asked 2021-01-22

Angles A and B are complementary. If \(\displaystyle{m}\angle{A}={27}∘\), what is the \(m\angle B?\) \(\displaystyle{m}\angle{B}= \circ {d}{e}{g}{r}{e}{e}{s}\)

asked 2021-01-31

Angles A and B are vertical angles.
If \(\displaystyle{m}\angle{A}={104}∘\) what is the \(m\angle B?\)
\(\displaystyle{m}\angle{B}=∘{d}{e}{g}{r}{e}{e}{s}\)

asked 2021-01-17
Guided Proof Let \({v_{1}, v_{2}, .... V_{n}}\) be a basis for a vector space V.
Prove that if a linear transformation \(T : V \rightarrow V\) satisfies
\(T (v_{i}) = 0\ for\ i = 1, 2,..., n,\) then T is the zero transformation.
To prove that T is the zero transformation, you need to show that \(T(v) = 0\) for every vector v in V.
(i) Let v be the arbitrary vector in V such that \(v = c_{1} v_{1} + c_{2} v_{2} +\cdots + c_{n} V_{n}\)
(ii) Use the definition and properties of linear transformations to rewrite T(v) as a linear combination of \(T(v_{j})\) .
(iii) Use the fact that \(T (v_{j}) = 0\)
to conclude that \(T (v) = 0,\) making T the zero transformation.
asked 2021-02-14

All bases considered in these are assumed to be ordered bases. In Exercise, compute the coordinate vector of v with respect to the giving basis S for V. V is \(R^2, S = \left\{ \begin{bmatrix}1 \\ 0 \end{bmatrix}\begin{bmatrix} 0 \\1 \end{bmatrix} \right\}, v = \begin{bmatrix} 3 \\-2 \end{bmatrix} \)

asked 2020-11-30

Let M be the vector space of \(2 \times 2\) real-valued matrices.
\(M=\begin{bmatrix}a & b \\c & d \end{bmatrix}\)
and define \(M^{\#}=\begin{bmatrix}d & b \\c & a \end{bmatrix}\) Characterize the matrices M such that \(M^{\#}=M^{-1}\)

asked 2021-01-17
Let V be the vector space of real 2 x 2 matrices with inner product
(A|B) = tr(B^tA).
Let U be the subspace of V consisting of the symmetric matrices. Find an orthogonal basis for \(U^\perp\) where \(U^{\perp}\left\{A \in V |(A|B)=0 \forall B \in U \right\}\)
asked 2020-11-30

Consider \(\displaystyle{V}={s}{p}{a}{n}{\left\lbrace{\cos{{\left({x}\right)}}},{\sin{{\left({x}\right)}}}\right\rbrace}\) a subspace of the vector space of continuous functions and a linear transformation \(\displaystyle{T}:{V}\rightarrow{V}\) where \(\displaystyle{T}{\left({f}\right)}={f{{\left({0}\right)}}}\times{\cos{{\left({x}\right)}}}−{f{{\left(π{2}\right)}}}\times{\sin{{\left({x}\right)}}}.\) Find the matrix of T with respect to the basis \(\displaystyle{\left\lbrace{\cos{{\left({x}\right)}}}+{\sin{{\left({x}\right)}}},{\cos{{\left({x}\right)}}}−{\sin{{\left({x}\right)}}}\right\rbrace}\) and determine if T is an isomorphism.

...