# Limits with variable substitution and Trig $$\displaystyle\lim_{{{x}\to{0}}}{\frac{{{{\sin}^{{2}}{\left({3}{x}\right)}}}}{{{x}^{{2}}{\cos{{x}}}}}}=\lim_{{{u}\to{0}}}{\frac{{{{\sin}^{{2}}{\left({u}\right)}}}}{{{\left({\frac{{u}}{{3}}}\right)}^{{2}}}}}={9}{\left(\lim_{{{u}\to{0}}}{\frac{{{\sin{{u}}}}}{{u}}}\right)}^{{2}}$$

Limits with variable substitution and Trig
$\underset{x\to 0}{lim}\frac{{\mathrm{sin}}^{2}\left(3x\right)}{{x}^{2}\mathrm{cos}x}=\underset{u\to 0}{lim}\frac{{\mathrm{sin}}^{2}\left(u\right)}{{\left(\frac{u}{3}\right)}^{2}}=9{\left(\underset{u\to 0}{lim}\frac{\mathrm{sin}u}{u}\right)}^{2}$
You can still ask an expert for help

• Questions are typically answered in as fast as 30 minutes

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

Riya Erickson
Hint:
$\underset{x\to 0}{lim}\frac{{\mathrm{sin}}^{2}\left(3x\right)}{{x}^{2}\mathrm{cos}x}=$
$\underset{x\to 0}{lim}\frac{\mathrm{sin}\left(3x\right)}{x}.\underset{x\to 0}{lim}\frac{\mathrm{sin}\left(3x\right)}{x}.\underset{x\to 0}{lim}\frac{1}{\mathrm{cos}x}=$
$\underset{x\to 0}{lim}3\frac{\mathrm{sin}\left(3x\right)}{3x}.\underset{x\to 0}{lim}3\frac{\mathrm{sin}\left(3x\right)}{3x}.\underset{x\to 0}{lim}\frac{1}{\mathrm{cos}x}=$
$9\underset{1}{\underset{⏟}{\underset{x\to 0}{lim}\frac{\mathrm{sin}\left(3x\right)}{3x}}}.\underset{1}{\underset{⏟}{\underset{x\to 0}{lim}\frac{\mathrm{sin}\left(3x\right)}{3x}}}.\underset{x\to 0}{lim}\frac{1}{\mathrm{cos}x}=$
$9.1.1.\underset{x\to 0}{lim}\frac{1}{\mathrm{cos}x}=9.1.1.1$
###### Not exactly what you’re looking for?

• Questions are typically answered in as fast as 30 minutes

Solve your problem for the price of one coffee