The equivalent polar equation for the given rectangular - coordinate equation. y= -3

The equivalent polar equation for the given rectangular - coordinate equation. y= -3

Question
Alternate coordinate systems
asked 2021-02-26
The equivalent polar equation for the given rectangular - coordinate equation.
\(\displaystyle{y}=\ -{3}\)

Answers (1)

2021-02-27
Concepts used: Conversion formula for coordinate systems are given as:
a) From polar to rectangular:
\(\displaystyle{x}={r}{\cos{\theta}}\)
\(\displaystyle{y}={r}{\sin{\theta}}\)
b) From rectangular to polar:
\(\displaystyle{r}=\pm\sqrt{{{x}^{{{2}}}\ +\ {y}^{{{2}}}}}\)
\(\displaystyle{\cos{\theta}}={\frac{{{x}}}{{{r}}}},\ {\sin{\theta}}={\frac{{{y}}}{{{r}}}},\ {\tan{\theta}}={\frac{{{x}}}{{{y}}}}\)
Calcculation:
Converting into equivalent polar equation:
\(\displaystyle{y}=\ -{3}\)
Put \(\displaystyle{x}={r}{\cos{\theta}},\ {y}={r}{\sin{\theta}},\)
\(\displaystyle\Rightarrow\ {r}{\sin{\theta}}=\ -{3}\)
\(\displaystyle\Rightarrow\ {r}=\ -{\frac{{{3}}}{{{\sin{\theta}}}}}\)
Hence, desired equivalent polar equation would be \(\displaystyle{r}=\ -{\frac{{{3}}}{{{\sin{\theta}}}}}\)
0

Relevant Questions

asked 2021-02-08

To find: The equivalent polar equation for the given rectangular-coordinate equation.
Given:
\(\displaystyle{x}^{2}+{y}^{2}+{8}{x}={0}\)

asked 2020-11-22
To find: The equivalent polar equation for the given rectangular-coordinate equation.
Given:
\(\displaystyle\ {x}=\ {r}{\cos{\theta}}\)
\(\displaystyle\ {y}=\ {r}{\sin{\theta}}\)
b. From rectangular to polar:
\(\displaystyle{r}=\pm\sqrt{{{x}^{{{2}}}\ +\ {y}^{{{2}}}}}\)
\(\displaystyle{\cos{\theta}}={\frac{{{x}}}{{{r}}}},{\sin{\theta}}={\frac{{{y}}}{{{r}}}},{\tan{\theta}}={\frac{{{x}}}{{{y}}}}\)
Calculation:
Given: equation in rectangular-coordinate is \(\displaystyle{y}={x}\).
Converting into equivalent polar equation -
\(\displaystyle{y}={x}\)
Put \(\displaystyle{x}={r}{\cos{\theta}},\ {y}={r}{\sin{\theta}},\)
\(\displaystyle\Rightarrow\ {r}{\sin{\theta}}={r}{\cos{\theta}}\)
\(\displaystyle\Rightarrow\ {\frac{{{\sin{\theta}}}}{{{\cos{\theta}}}}}={1}\)
\(\displaystyle\Rightarrow\ {\tan{\theta}}={1}\)
Thus, desired equivalent polar equation would be \(\displaystyle\theta={1}\)
asked 2020-12-24
The equivalent polar equation for the given rectangular-coordinate equation:
\(\displaystyle{x}^{{{2}}}\ +\ {y}^{{{2}}}\ +\ {8}{x}={0}\)
asked 2020-11-01
The equivalent polar coordinates for the given rectangular coordinates.
A rectangular coordinate is given as (0, -3).
asked 2021-01-28
Find the Equivalent Polar Equation for a given Equation with Rectangular Coordinates:
\(\displaystyle{r}{\cos{\theta}}=\ -{1}\)
asked 2020-12-29
The equivalent polar coordinates for the given rectangular coordinates:
\(\displaystyle{\left[\begin{array}{cc} {4}&\ {0}\end{array}\right]}\)
asked 2020-12-02
The equivalent rectangular coordinates for the given polar coordinates:
\(\displaystyle{\left[\begin{array}{cc} {6}&\ -{135}^{{\circ}}\end{array}\right]}\)
asked 2020-12-09
The equivalent polar coordinates for the given rectangular coordinates: \(\displaystyle{\left[\begin{array}{cc} {5}&\ {180}^{{\circ}}\end{array}\right]}\)
asked 2021-02-09
To fill: The blanck spaces in the statement " The origin in the rectangular coordinate system concedes with the ? in polar coordinates. The positive x-axis in rectangular coordinates coincides with the ? in polar coordinates".
asked 2021-01-02
Solve the given Alternate Coordinate Systems and give a correct answer 10) Convert the equation from Cartesian to polar coordinates solving for PSKr^2:
\frac{x^2}{9} - \frac{y^2}{16} = 25ZSK
...