Question

Twenty-one independent measurements were taken of the hardness (on the Rockwell C scale) of HSLA-100 steel base metal, and another 21 independent meas

Measurement
ANSWERED
asked 2021-02-05
Twenty-one independent measurements were taken of the hardness (on the Rockwell C scale) of HSLA-100 steel base metal, and another 21 independent measurements were made of the hardness of a weld produced on this base metal.
The standard deviation of the measurements made on the base metal was 3.06, and the standard deviation of the measurements made on the weld was 1.41.
Assume that the measurements are independent random samples from normal populations.
Need to conclude that measurements made on the base metal are more variable than measurements made on the weld?

Expert Answers (1)

2021-02-06
Step 1
According to the given question, twenty-one independent measurements were taken of the hardness (on the Rockwell C scale) of HSLA-100 steel base metal, and another 21 independent measurements were made of the hardness of a weld produced on this base metal.
The standard deviation of the measurements made on the base metal was 3.06, and the standard deviation of the measurements made on the weld was 1.41.
Assume that the measurements are independent random samples from normal populations.
Therefore the given data are as follows:
\(n_{1}=21, s_{1}=3.06\ and\ n_{2}=21, s_{2}=1.41\)
In order to test whether the measurements made on the base metal are move variable than measurements made on the weld, we define the test hypothesis as:
\(H_{0}:\sum_{1}^{2}=\sigma_{2}^{2}\)
Against the alternative hypotesis as
\(H_{0}:\sum_{1}^{2}\neq \sigma_{2}^{2}\)
This hypothesis follows a F statistics with \(df_{1}=n_{1}-1=20,df_{2}=n_{2}-1=20\)
and the confidence level at \(\alpha = 0.05\):
Step 2
\(F=\frac{S_{1}^{2}}{S_{2}^{2}}=\frac{9.832}{2.088}=4.709\)
Where
\(S_{1}^{2}=\frac{n_{1}}{n_{1}-1}s_{1}^{2}=9.832\ and\ S_{2}^{2}=\frac{n_{2}}{n_{2}-1}s_{2}^{2}=2.088\)
Tabulated F statistics value is determined as:
\(F_{20,20,0.05}=2.124\)
As the calculated value is more that the tabulated value
\(F_{observed}=4.709>F_{20,20,0.05}=2.124\)
We reject the null hypothesis at 55 level of significance and we have sufficient evidence to conclude that measurements made on the base metal are more variable than measurements made on the weld.
9
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2021-05-14
When σ is unknown and the sample size is \(\displaystyle{n}\geq{30}\), there are tow methods for computing confidence intervals for μμ. Method 1: Use the Student's t distribution with d.f. = n - 1. This is the method used in the text. It is widely employed in statistical studies. Also, most statistical software packages use this method. Method 2: When \(\displaystyle{n}\geq{30}\), use the sample standard deviation s as an estimate for σσ, and then use the standard normal distribution. This method is based on the fact that for large samples, s is a fairly good approximation for σσ. Also, for large n, the critical values for the Student's t distribution approach those of the standard normal distribution. Consider a random sample of size n = 31, with sample mean x¯=45.2 and sample standard deviation s = 5.3. (c) Compare intervals for the two methods. Would you say that confidence intervals using a Student's t distribution are more conservative in the sense that they tend to be longer than intervals based on the standard normal distribution?
asked 2021-01-17
A new thermostat has been engineered for the frozen food cases in large supermarkets. Both the old and new thermostats hold temperatures at an average of \(25^{\circ}F\). However, it is hoped that the new thermostat might be more dependable in the sense that it will hold temperatures closer to \(25^{\circ}F\). One frozen food case was equipped with the new thermostat, and a random sample of 21 temperature readings gave a sample variance of 5.1. Another similar frozen food case was equipped with the old thermostat, and a random sample of 19 temperature readings gave a sample variance of 12.8. Test the claim that the population variance of the old thermostat temperature readings is larger than that for the new thermostat. Use a \(5\%\) level of significance. How could your test conclusion relate to the question regarding the dependability of the temperature readings? (Let population 1 refer to data from the old thermostat.)
(a) What is the level of significance?
State the null and alternate hypotheses.
\(H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}>?_{2}^{2}H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}\neq?_{2}^{2}H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}?_{2}^{2},H1:?_{1}^{2}=?_{2}^{2}\)
(b) Find the value of the sample F statistic. (Round your answer to two decimal places.)
What are the degrees of freedom?
\(df_{N} = ?\)
\(df_{D} = ?\)
What assumptions are you making about the original distribution?
The populations follow independent normal distributions. We have random samples from each population.The populations follow dependent normal distributions. We have random samples from each population.The populations follow independent normal distributions.The populations follow independent chi-square distributions. We have random samples from each population.
(c) Find or estimate the P-value of the sample test statistic. (Round your answer to four decimal places.)
(d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis?
At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are not statistically significant.At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are statistically significant. At the ? = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant.At the ? = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant.
(e) Interpret your conclusion in the context of the application.
Reject the null hypothesis, there is sufficient evidence that the population variance is larger in the old thermostat temperature readings.Fail to reject the null hypothesis, there is sufficient evidence that the population variance is larger in the old thermostat temperature readings. Fail to reject the null hypothesis, there is insufficient evidence that the population variance is larger in the old thermostat temperature readings.Reject the null hypothesis, there is insufficient evidence that the population variance is larger in the old thermostat temperature readings.
asked 2020-12-07

Suppose you take independent random samples from populations with means \(\displaystyle\mu{1}{\quad\text{and}\quad}\mu{2}\) and standard deviations \(\displaystyle\sigma{1}{\quad\text{and}\quad}\sigma{2}\). Furthermore, assume either that (i) both populations have normal distributions, or (ii) the sample sizes (\(n_1 \text{ and } n_2\)) are large. If \(X_1 \text{ and } X_2\) are the random sample means, then how does the quantity
\(\displaystyle\frac{{{\left(\overline{{{x}_{{1}}}}-\overline{{{x}_{{2}}}}\right)}-{\left(\mu_{{1}}-\mu_{{2}}\right)}}}{{\sqrt{{\frac{{{\sigma_{{1}}^{{2}}}}}{{{n}_{{1}}}}+\frac{{{\sigma_{{2}}^{{2}}}}}{{{n}_{{2}}}}}}}}\)
Give the name of the distribution and any parameters needed to describe it.

asked 2021-01-31
A certain scale has an uncertainty of 3 g and a bias of 2 g. a) A single measurement is made on this scale. What are the bias and uncertainty in this measurement? b) Four independent measurements are made on this scale. What are the bias and uncertainty in the average of these measurements? c) Four hundred independent measurements are made on this scale. What are the bias and uncertainty in the average of these measurements? d) As more measurements are made, does the uncertainty get smaller, get larger, or stay the same? e) As more measurements are made, does the bias get smaller, get larger, or stay the same?
...