# To determine: a) Whether the statement, " The point with Cartesian coordinates $( -2,\ 2 )$ has polar coordinates $\bf \left( 2 \sqrt{2},\ \frac{3 \pi}{4} \right)\ \left( 2 \sqrt{2},\frac{11 \pi}{4} \right)\ \left( 2 \sqrt{2},\ -\frac{5 \pi}{4} \right)\ and\ \left( -2 \sqrt2,\ -\frac{\pi}{4} \right)$ " is true or false. b) Whether the statement, " the graphs of $r \cos \theta=4\ and\ r \sin \theta=\ -2$ intersect exactly once " is true or false. c) Whether the statement, " the graphs of $r=4\ and\ \theta= \frac{\pi}{4}$ intersect exactly once ", is true or false. d) Whether the statement, " the point $\left( 3,\frac{\pi}{2} \right)$ lies on the graph of $r=3 \cos\ 2\ \theta$ " is true or false. e) Whether the statement, " the graphs of $r=2 \sec \theta\ and\ r=3 \csc \th # To determine: a) Whether the statement, " The point with Cartesian coordinates \[( -2,\ 2 )$ has polar coordinates $\bf \left( 2 \sqrt{2},\ \frac{3 \pi}{4} \right)\ \left( 2 \sqrt{2},\frac{11 \pi}{4} \right)\ \left( 2 \sqrt{2},\ -\frac{5 \pi}{4} \right)\ and\ \left( -2 \sqrt2,\ -\frac{\pi}{4} \right)$ " is true or false. b) Whether the statement, " the graphs of $r \cos \theta=4\ and\ r \sin \theta=\ -2$ intersect exactly once " is true or false. c) Whether the statement, " the graphs of $r=4\ and\ \theta= \frac{\pi}{4}$ intersect exactly once ", is true or false. d) Whether the statement, " the point $\left( 3,\frac{\pi}{2} \right)$ lies on the graph of $r=3 \cos\ 2\ \theta$ " is true or false. e) Whether the statement, " the graphs of \[r=2 \sec \theta\ and\ r=3 \csc \th

Question
Alternate coordinate systems
To determine:
a) Whether the statement, " The point with Cartesian coordinates $$\displaystyle{\left[\begin{array}{cc} -{2}&\ {2}\end{array}\right]}$$ has polar coordinates $$\displaystyle{\left[{b}{f}{\left({2}\sqrt{{{2}}},\ {\frac{{{3}\pi}}{{{4}}}}\right)}\ {\left({2}\sqrt{{{2}}},{\frac{{{11}\pi}}{{{4}}}}\right)}\ {\left({2}\sqrt{{{2}}},\ -{\frac{{{5}\pi}}{{{4}}}}\right)}\ {\quad\text{and}\quad}\ {\left(-{2}\sqrt{{2}},\ -{\frac{{\pi}}{{{4}}}}\right)}\right]}$$ " is true or false.
b) Whether the statement, " the graphs of $$\displaystyle{\left[{r}{\cos{\theta}}={4}\ {\quad\text{and}\quad}\ {r}{\sin{\theta}}=\ -{2}\right]}$$ intersect exactly once " is true or false.
c) Whether the statement, " the graphs of $$\displaystyle{\left[{r}={4}\ {\quad\text{and}\quad}\ \theta={\frac{{\pi}}{{{4}}}}\right]}$$ intersect exactly once ", is true or false.
d) Whether the statement, " the point $$\displaystyle{\left[\begin{array}{cc} {3}&{\frac{{\pi}}{{{2}}}}\end{array}\right]}{l}{i}{e}{s}{o}{n}{t}{h}{e}{g}{r}{a}{p}{h}{o}{f}{\left[{r}={3}{\cos{\ }}{2}\ \theta\right]}$$ " is true or false.
e) Whether the statement, " the graphs of $$\displaystyle{\left[{r}={2}{\sec{\theta}}\ {\quad\text{and}\quad}\ {r}={3}{\csc{\theta}}\right]}$$ are lines " is true or false.

2021-02-10
a)
The polar coordinate $$\displaystyle{\left[\begin{array}{cc} {r}&\theta\end{array}\right]}$$ corresponding to Cartesian coordinate $$\displaystyle{\left[\begin{array}{cc} {x}&\ {y}\end{array}\right]}{i}{s}{g}{i}{v}{e}{n}{b}{y}{\left[{r}=\sqrt{{{x}^{{{2}}}\ +\ {y}^{{{2}}}}}\ {\quad\text{and}\quad}\theta={{\tan}^{{-{1}}}{\left({\frac{{{y}}}{{{x}}}}\right)}}\right]}.$$
From the given data, $$\displaystyle{\left[{\left({x},\ {y}\right)}={\left(-{2},\ {2}\right)}\right]}.$$
Substitute $$\displaystyle{\left[{\left({x},\ {y}\right)}={\left(-{2},\ {2}\right)}\right]}\in{\left[{r}=\sqrt{{{x}^{{{2}}}\ +\ {y}^{{{2}}}}}\right]}$$ and obtain the value of r.
$$\displaystyle{r}=\sqrt{{{2}^{{{2}}}\ +\ {\left(-{2}\right)}^{{{2}}}}}$$
$$\displaystyle=\pm\sqrt{{{8}}}$$
$$\displaystyle=\pm\ {2}\sqrt{{{2}}}$$
Similary, calculate the value of $$\displaystyle{\left[\theta\right]}$$ as follows.
$$\displaystyle\theta={{\tan}^{{-{1}}}{\left(-{\frac{{{2}}}{{{2}}}}\right)}}$$
$$\displaystyle={{\tan}^{{-{1}}}{\left(-{1}\right)}}$$
$$\displaystyle={\frac{{{3}\pi}}{{{4}}}}\ +\pi{n},\ {n}\ \in{\mathbb{{Z}}}$$
For $$\displaystyle{\left[{r}={2}\sqrt{{{2}}}\ {\quad\text{and}\quad}\ {n}={0}\right]}{t}{h}{e}{p}{o}{l}{a}{r}{c}\infty{r}{d}\in{a}{t}{e}{i}{s}{\left[\begin{array}{cc} {2}\sqrt{{{2}}}&{\frac{{{3}\pi}}{{{4}}}}\end{array}\right]}.$$
For $$\displaystyle{\left[{r}={2}\sqrt{{{2}}}\ {\quad\text{and}\quad}\ {n}={2}\backslash\right]}{t}{h}{e}{p}{o}{l}{a}{r}{c}\infty{r}{d}\in{a}{t}{e}{i}{s}{\left[{\left({2}\sqrt{{{2}}},{\frac{{{11}\pi}}{{{4}}}}\right)}\backslash\right]}.$$
For $$\displaystyle{\left[{r}={2}\sqrt{{{2}}}\ {\quad\text{and}\quad}\ {n}=\ -{2}\backslash\right]}{t}{h}{e}{p}{o}{l}{a}{r}{c}\infty{r}{d}\in{a}{t}{e}{i}{s}{\left[{\left({2}\sqrt{{{2}}},\ -{\frac{{{5}\pi}}{{{4}}}}\right)}\backslash\right]}$$.
For $$\displaystyle{\left[{r}={2}\sqrt{{{2}}}\ {\quad\text{and}\quad}\ {n}=\ -{1}\backslash\right]}{t}{h}{e}{p}{o}{l}{a}{r}{c}\infty{r}{d}\in{a}{t}{e}{i}{s}{\left[{\left(-{2}\sqrt{{{2}}},\ -{\frac{{\pi}}{{{4}}}}\right)}\backslash\right]}$$
Hence the given stament is true.
b) Note that the Cartesian coordinates corresponding to polar coordinates $$\displaystyle{\left[\begin{array}{cc} {r}&\theta\end{array}\right]}$$ are given by $$\displaystyle{\left[{x}={r}{\cos{\theta}}\ {\quad\text{and}\quad}\ {y}={r}{\sin{\theta}}\right]}.$$
From the given data it can be concluded that,
$$\displaystyle{x}={r}{\cos{\theta}}$$
$$\displaystyle={4}$$
$$\displaystyle{y}={r}{\sin{\theta}}$$
$$\displaystyle=\ -{2}$$
Which is noting but a single point $$\displaystyle{\left[\begin{array}{cc} {4}&\ -{2}\end{array}\right]}$$.
Therefore, the given statement is true.
c)
The given polar equations are $$\displaystyle{\left[{r}={2}\ {\quad\text{and}\quad}\ \theta={\frac{{\pi}}{{{4}}}}\right]}$$.
Note that $$\displaystyle{\left[{r}={2}\right]}$$ is an equation of a circle centered at the origin and having radius 2 while $$\displaystyle{\left[\theta={\frac{{\pi}}{{{4}}}}\right]}$$ is an equation of a straight line passing through the origin.
Thus the line $$\displaystyle{\left[\theta={\frac{{\pi}}{{{4}}}}\right]}$$ intersects the circle $$\displaystyle{r}={2}$$ twise.
Therefore, the statement is false.
d)
The given point is $$\displaystyle{\left[{\left({3},{\frac{{\pi}}{{{2}}}}\right)}={\left({r},\theta\right)}\right]}$$.
Change the radial coordinate to -3 and subtract $$\displaystyle{\left[\pi\right]}$$ from the angle to obtain the alternate representation of the point as follows.
$$\displaystyle{\left[{\left(-{3},{\frac{{\pi}}{{{2}}}}\ -\pi\right)}={\left(-{3},-{\frac{{\pi}}{{{2}}}}\right)}\right]}$$
Thus, point $$\displaystyle{\left[\begin{array}{cc} -{3}&-{\frac{{\pi}}{{{2}}}}\end{array}\right]}{\quad\text{and}\quad}{\left[\begin{array}{cc} {3}&{\frac{{\pi}}{{{2}}}}\end{array}\right]}$$ represent the same point.
Substitute $$\displaystyle{\left[{r}=\ -{3}\ {\quad\text{and}\quad}\ \theta=\ -{\frac{{\pi}}{{{2}}}}\ \in\ {r}={3}{\cos{{2}}}\theta\right]}$$
$$\displaystyle{\left[-{3}={3}{\cos{\ }}{2}{\left(-{\frac{{\pi}}{{{2}}}}\right)}\right.}$$
$$\displaystyle={3}{\cos{\ }}{\left(-\pi\right)}$$
$$\displaystyle={3}{\cos{\pi}}$$
$$\displaystyle=-{3}$$
Therefore, the point $$\displaystyle{\left[\begin{array}{cc} -{3}&-{\frac{{\pi}}{{{2}}}}\end{array}\right]}$$ lies on the graph of $$\displaystyle{\left[{r}={3}{\cos{{2}}}\theta\right]}$$ that is the point $$\displaystyle{\left[\begin{array}{cc} {3}&{\frac{{\pi}}{{{2}}}}\end{array}\right]}$$ also lies on the graph of $$\displaystyle{\left[{r}={3}{\cos{{2}}}\theta\right]}$$.
Therefore, the statement is true.
e)
The given equations are $$\displaystyle{\left[{r}={2}{\sec{\theta}}\right]}{\quad\text{and}\quad}{\left[{r}={3}{\csc{\theta}}\right]}.$$
Rewrite $$\displaystyle{\left[{r}={2}{\sec{\theta}}\right]}{\quad\text{and}\quad}{\left[{r}={3}{\csc{\theta}}\right]}$$ as follows.
$$\displaystyle{r}={2}{\sec{\theta}}$$
$$\displaystyle{r}{\cos{\theta}}={2}$$
$$\displaystyle{r}={3}{\csc{\theta}}$$
$$\displaystyle{r}{\sin{\theta}}={3}$$
Note that $$\displaystyle{r}{\cos{\theta}}={x}{]}{\quad\text{and}\quad}{\left[{r}{\sin{\theta}}={y}\right]}$$.
Thus, the given equations $$\displaystyle{\left[{x}={2}\right]}{\quad\text{and}\quad}{\left[{y}={3}\right]}$$ represent the lines in the xy - plane.
Therefore, the given statement is true.

### Relevant Questions

The bulk density of soil is defined as the mass of dry solidsper unit bulk volume. A high bulk density implies a compact soilwith few pores. Bulk density is an important factor in influencing root development, seedling emergence, and aeration. Let X denotethe bulk density of Pima clay loam. Studies show that X is normally distributed with $$\displaystyle\mu={1.5}$$ and $$\displaystyle\sigma={0.2}\frac{{g}}{{c}}{m}^{{3}}$$.
(a) What is thedensity for X? Sketch a graph of the density function. Indicate onthis graph the probability that X lies between 1.1 and 1.9. Findthis probability.
(b) Find the probability that arandomly selected sample of Pima clay loam will have bulk densityless than $$\displaystyle{0.9}\frac{{g}}{{c}}{m}^{{3}}$$.
(c) Would you be surprised if a randomly selected sample of this type of soil has a bulkdensity in excess of $$\displaystyle{2.0}\frac{{g}}{{c}}{m}^{{3}}$$? Explain, based on theprobability of this occurring.
(d) What point has the property that only 10% of the soil samples have bulk density this high orhigher?
(e) What is the moment generating function for X?

The reason ehy the point $$(-1, \frac{3\pi}{2})$$ lies on the polar graph $$r=1+\cos \theta$$ even though it does not satisfy the equation.

Convert the following polar equation into a cartesian equation. Specifically describe the graph of the equation in rectangular coordinates: $$\displaystyle{r}={5}{\sin{\theta}}$$
The graph of y = f(x) contains the point (0,2), $$\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}={\frac{{-{x}}}{{{y}{e}^{{{x}^{{2}}}}}}}$$, and f(x) is greater than 0 for all x, then f(x)=
A) $$\displaystyle{3}+{e}^{{-{x}^{{2}}}}$$
B) $$\displaystyle\sqrt{{{3}}}+{e}^{{-{x}}}$$
C) $$\displaystyle{1}+{e}^{{-{x}}}$$
D) $$\displaystyle\sqrt{{{3}+{e}^{{-{x}^{{2}}}}}}$$
E) $$\displaystyle\sqrt{{{3}+{e}^{{{x}^{{2}}}}}}$$
4.7 A multiprocessor with eight processors has 20attached tape drives. There is a large number of jobs submitted tothe system that each require a maximum of four tape drives tocomplete execution. Assume that each job starts running with onlythree tape drives for a long period before requiring the fourthtape drive for a short period toward the end of its operation. Alsoassume an endless supply of such jobs.
a) Assume the scheduler in the OS will not start a job unlessthere are four tape drives available. When a job is started, fourdrives are assigned immediately and are not released until the jobfinishes. What is the maximum number of jobs that can be inprogress at once? What is the maximum and minimum number of tapedrives that may be left idle as a result of this policy?
b) Suggest an alternative policy to improve tape driveutilization and at the same time avoid system deadlock. What is themaximum number of jobs that can be in progress at once? What arethe bounds on the number of idling tape drives?
The student engineer of a campus radio station wishes to verify the effectivencess of the lightning rod on the antenna mast. The unknown resistance $$\displaystyle{R}_{{x}}$$ is between points C and E. Point E is a "true ground", but is inaccessible for direct measurement because the stratum in which it is located is several meters below Earth's surface. Two identical rods are driven into the ground at A and B, introducing an unknown resistance $$\displaystyle{R}_{{y}}$$. The procedure for finding the unknown resistance $$\displaystyle{R}_{{x}}$$ is as follows. Measure resistance $$\displaystyle{R}_{{1}}$$ between points A and B. Then connect A and B with a heavy conducting wire and measure resistance $$\displaystyle{R}_{{2}}$$ between points A and C.Derive a formula for $$\displaystyle{R}_{{x}}$$ in terms of the observable resistances $$\displaystyle{R}_{{1}}$$ and $$\displaystyle{R}_{{2}}$$. A satisfactory ground resistance would be $$\displaystyle{R}_{{x}}{<}{2.0}$$ Ohms. Is the grounding of the station adequate if measurments give $$\displaystyle{R}_{{1}}={13}{O}{h}{m}{s}$$ and R_2=6.0 Ohms?
A pair of forces with equal magnitudes, opposite directions,and different lines of action is called a "couple". When acouple acts on a rigid object, the couple produces a torque thatdoes not depend on the location of the axis. The drawing shows acouple acting on a tire wrench, each force being perpendicular tothe wrench. Determine an expression for the torque produced by thecouple when the axis is perpendicular to the tired and passesthrough (a) point A, (b) point B, and (c) point C. Express youranswers in terms of the magnitude F of the force and the length Lof the wrench
Hypothetical potential energy curve for aparticle of mass m
If the particle is released from rest at position r0, its speed atposition 2r0, is most nearly
a) $$\displaystyle{\left({\frac{{{8}{U}{o}}}{{{m}}}}\right)}^{{1}}{\left\lbrace/{2}\right\rbrace}$$
b) $$\displaystyle{\left({\frac{{{6}{U}{o}}}{{{m}}}}\right)}^{{\frac{{1}}{{2}}}}$$
c) $$\displaystyle{\left({\frac{{{4}{U}{o}}}{{{m}}}}\right)}^{{\frac{{1}}{{2}}}}$$
d) $$\displaystyle{\left({\frac{{{2}{U}{o}}}{{{m}}}}\right)}^{{\frac{{1}}{{2}}}}$$
e) $$\displaystyle{\left({\frac{{{U}{o}}}{{{m}}}}\right)}^{{\frac{{1}}{{2}}}}$$
if the potential energy function is given by
$$\displaystyle{U}{\left({r}\right)}={b}{r}^{{P}}-\frac{{3}}{{2}}\rbrace+{c}$$
where b and c are constants
which of the following is an edxpression of the force on theparticle?
1) $$\displaystyle{\frac{{{3}{b}}}{{{2}}}}{\left({r}^{{-\frac{{5}}{{2}}}}\right)}$$
2) $$\displaystyle{\frac{{{3}{b}}}{{{2}}}}{\left\lbrace{3}{b}\right\rbrace}{\left\lbrace{2}\right\rbrace}{\left({r}^{{-\frac{{1}}{{2}}}}\right)}$$
3) $$\displaystyle{\frac{{{3}{b}}}{{{2}}}}{\left\lbrace{3}\right\rbrace}{\left\lbrace{2}\right\rbrace}{\left({r}^{{-\frac{{1}}{{2}}}}\right)}$$
4) $$\displaystyle{2}{b}{\left({r}^{{-\frac{{1}}{{2}}}}\right)}+{c}{r}$$
5) $$\displaystyle{\frac{{{3}{b}}}{{{2}}}}{\left\lbrace{2}{b}\right\rbrace}{\left\lbrace{5}\right\rbrace}{\left({r}^{{-\frac{{5}}{{2}}}}\right)}+{c}{r}$$
Solve the given Alternate Coordinate Systems and give a correct answer 10) Convert the equation from Cartesian to polar coordinates solving for $$r^2$$:
$$\frac{x^2}{9} - \frac{y^2}{16} = 25$$