The coordinate vector of \displaystyle{\left[{\mathbf{{{p}}}}

The coordinate vector of \displaystyle{\left[{\mathbf{{{p}}}}

Question
Alternate coordinate systems
asked 2020-12-17

The coordinate vector of \(\displaystyle{\left[{\mathbf{{{p}}}}\ {\left({t}\right)}\ =\ {6}\ +\ {3}{t}\ -{t}^{{{2}}}\right]}\) relative to the basis \(\displaystyle \mathscr{\left\lbrace{B}\right\rbrace}\ ={\left\lbrace{1}\ +\ {t},\ {1}\ +\ {t}^{{{2}}},\ {t}\ +\ {t}^{{{2}}}\right\rbrace}\)

Answers (1)

2020-12-18

Any arbitrary vector in \(\displaystyle{\mathbb{{{P}_{{{2}}}}}}\) can be written as,
\(\displaystyle{\left[{\mathbf{{{p}}}}\ {\left({t}\right)}\ =\ {a}\ {\left(\ {1}\ +\ {t}^{{{2}}}\ \right)}\ +\ {b}\ {\left(\ {t}\ +\ {t}^{{{2}}}\ \right)}\ +\ {c}\ {\left(\ {1}\ +\ {2}\ {t}\ +\ {t}^{{{2}}}\ \right)}\right]}\)
Thus, for the vector \(\displaystyle{\left[{\mathbf{{{p}}}}\ {\left(\ {t}\ \right)}={6}\ +\ {3}\ {t}\ -\ {t}^{{{2}}}\right]}\) can be written as,
1) \(\displaystyle{\left[{a}\ {\left(\ {1}\ +\ {t}\ \right)}\ +\ {b}\ {\left(\ {1}\ +\ {t}^{{{2}}}\ \right)}\ +\ {c}\ {\left(\ {t}\ +\ {t}^{{{2}}}\ \right)}={6}\ +\ {3}{t}\ -\ {t}^{{{2}}}\right]}\)
On comparing the terms of both the sides in the above equation (1) gives the following equations.
\(\displaystyle{a}\ +\ {b}={6}\)
\(\displaystyle{a}\ +\ {c}={3}\)
\(\displaystyle{b}\ +\ {c}=-{1}\)
The representation of the linear system in a matrix is,
\(\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ c \\ d \end{bmatrix}=\begin{bmatrix} 6 \\ 3 \\ -1 \end{bmatrix}\)
The solution of the above system gives as by solving the augmented matrix
\(\begin{bmatrix} 1 & 1 & 0 & 6 \\ 1 & 0 & 1 & 3 \\ 0 & 1 & 1 & -1 \end{bmatrix}\)
Use Elementary row transformations to reduce the augmented matrix to row reduced Echelon form.
Step 1:
\(\begin{bmatrix} 1 & 1 & 0 &\ \ 6 \\ 1 & 0 & 1 &\ \ 3 \\ 0 & 1 & 1 & -1 \end{bmatrix}\underrightarrow{R_{2}\ \rightarrow\ R_{2}\ -\ R_{1}} \begin{bmatrix} 1 & 1 & 0 &\ \ \ 6 \\ 0 & -1\ \ \ & 1 & -3 \\ 0 & 1 & 1 & -1 \end{bmatrix}\)
Step 2
\(\begin{bmatrix} 1 & 1 & 0 &\ \ \ 6 \\ 0 & -1\ \ \ & 1 & -3 \\ 0 & 1 & 1 & -1 \end{bmatrix} \underrightarrow{R_{3}\ \rightarrow\ R_{3}\ +\ R_{2}} \begin{bmatrix} 1 & 1 & 0 &\ \ \ 6 \\ 0 & -1\ \ \ & 1 & -3 \\ 0 & 0 & 2 & -4 \end{bmatrix}\)
Step 3:
\(\begin{bmatrix} 1 & 1 & 0 &\ \ \ 6 \\ 0 & -1\ \ \ & 1 & -3 \\ 0 & 0 & 2 & -4 \end{bmatrix}\underrightarrow {R_{1}\ \rightarrow\ R_{1}\ +\ R_{2}\ - \frac{1}{2}\ R_{3}} \begin{bmatrix} 1 & 0 & 0 &\ \ \ 5 \\ 0 & -1\ \ \ & 1 & -3 \\ 0 & 0 & 2 & -4 \end{bmatrix}\)
Step 4:
\(\begin{bmatrix} 1 & 0 & 0 &\ \ \ 5 \\ 0 & -1\ \ \ & 1 & -3 \\ 0 & 0 & 2 & -4 \end{bmatrix}\underrightarrow {R_{2}\ \rightarrow\ R_{2}\ - \frac{1}{2}\ R_{3}} \begin{bmatrix} 1 & 0 & 0 &\ \ \ 5 \\ 0 & 1 & 0 &\ \ \ 1 \\ 0 & 0 & 1 & -2 \end{bmatrix}\)
Step 5:
\(\begin{bmatrix} 1 & 0 & 0 &\ \ \ 5 \\ 0 & -1\ \ \ & 1 & -1 \\ 0 & 0 & 2 & -4 \end{bmatrix}\underrightarrow {R_{2}\ \rightarrow\ -1\ \times\ R_{2}}_{R_{3}\rightarrow \frac{1}{2}\ R_{3}} \begin{bmatrix} 1 & 0 & 0 &\ \ \ 5 \\ 0 & 1 & 0 &\ \ \ 1 \\ 0 & 0 & 1 & -2 \end{bmatrix}\)
Thus, the solution is \(\begin{bmatrix} a \\ c \\ d \end{bmatrix}=\begin{bmatrix} \ \ \ \ 5 \\ \ \ \ \ 1 \\ -2 \end{bmatrix}\)
Therefore, the coordinate vector \(\mathbf {[p]_{\mathscr {B}}}\ is \begin{bmatrix} \ \ \ \ 5 \\ \ \ \ \ 1 \\ -2 \end{bmatrix}\)

0

Relevant Questions

asked 2021-02-08

To find: The equivalent polar equation for the given rectangular-coordinate equation.
Given:
\(\displaystyle{x}^{2}+{y}^{2}+{8}{x}={0}\)

asked 2021-02-26

The reason ehy the point \((-1, \frac{3\pi}{2})\) lies on the polar graph \(r=1+\cos \theta\) even though it does not satisfy the equation.

asked 2021-02-27
The system of equation \begin{cases}2x + y = 1\\4x +2y = 3\end{cases} by graphing method and if the system has no solution then the solution is inconsistent. Given: The linear equations is \begin{cases}2x + y = 1\\4x +2y = 3\end{cases}
asked 2020-10-21

To solve:
\(\displaystyle{\left(\begin{matrix}{x}-{2}{y}={2}\\{2}{x}+{3}{y}={11}\\{y}-{4}{z}=-{7}\end{matrix}\right)}\)

asked 2021-01-31

(10%) In \(R^2\), there are two sets of coordinate systems, represented by two distinct bases: \((x_1, y_1)\) and \((x_2, y_2)\). If the equations of the same ellipse represented by the two distinct bases are described as follows, respectively: \(2(x_1)^2 -4(x_1)(y_1) + 5(y_1)^2 - 36 = 0\) and \((x_2)^2 + 6(y_2)^2 - 36 = 0.\) Find the transformation matrix between these two coordinate systems: \((x_1, y_1)\) and \((x_2, y_2)\).

asked 2021-02-14

All bases considered in these are assumed to be ordered bases. In Exercise, compute the coordinate vector of v with respect to the giving basis S for V. V is \(R^2, S = \left\{ \begin{bmatrix}1 \\ 0 \end{bmatrix}\begin{bmatrix} 0 \\1 \end{bmatrix} \right\}, v = \begin{bmatrix} 3 \\-2 \end{bmatrix} \)

asked 2020-12-30

Consider the elliptical-cylindrical coordinate system (eta, psi, z), defined by \(x = a \ \cos h \ \eta \cos \psi, y = a \sin h\ \eta \sin \psi; z = z,\ \eta \ GE \ 0, 0 \ LE \ \psi LE \ 2 \pi, \ z R. In \ PS6\)
it was shown that this is an orthogonal coordinate system with scale factors \(\displaystyle{h}_{{1}}={h}_{{2}}={a}{\left({{\text{cosh}}^{{2}}\ }\eta-{{\cos}^{{2}}\psi}\right)}^{{{\frac{{{1}}}{{{2}}}}}}.\)
Determine the dual bases \(\displaystyle{\left({E}{1},{E}{2},{E}{3}\right)},{\left(\eta,\eta\psi,{z}\right)}.{S}{h}{o}{w}{t}\hat{:}{f}={a}\frac{{1}}{{a}}\frac{{\left({{\text{cosh}}^{{2}}{e}}{a}{t}-{{\cos}^{{s}}\psi}\right)}^{{1}}}{{2}}{\left[\frac{{f}}{\eta}{e}{1}+\frac{{f}}{\psi}{e}{2}+\frac{{f}}{{z}}{e}{3},\frac{{f}}{{w}}{h}{e}{r}{e}{\left({e}{1},{e}{2},{e}{3}\right)}\right.}\) denotes the unit coordinate basis.

asked 2020-11-12

The given system of inequality:
\(\displaystyle{\left\lbrace\begin{matrix}{y}<{9}-{x}^{2}\\{y}\ge{x}+{3}\end{matrix}\right.}\)
Also find the coordinates of all vertices, and check whether the solution set is bounded.

asked 2021-01-31

The quadratic function \(\displaystyle{y}={a}{x}^{2}+{b}{x}+{c}\) whose graph passes through the points (1, 4), (2, 1) and (3, 4).

asked 2020-11-03

Interraption: To show that the system \(\displaystyle\dot{{r}}={r}{\left({1}-{r}^{2}\right)},\dot{\theta}={1}\) is equivalent to \(\displaystyle\dot{{x}}={x}-{y}-{x}{\left({x}^{2}+{y}^{2}\right)},\dot{{y}}={x}+{y}-{y}{\left({x}^{2}+{y}^{2}\right)}\) for polar to Cartesian coordinates.
A limit cycle is a closed trajectory. Isolated means that neighboring trajectories are not closed.
A limit cycle is said to be unstable or half stable, if all neighboring trajectories approach the lemin cycle.
These systems oscillate even in the absence of external periodic force.

...