\displaystyle{b}{e}{g}\in{\left\lbrace{c}{a}{s}{e}{s}\right\rbrace}

\displaystyle{b}{e}{g}\in{\left\lbrace{c}{a}{s}{e}{s}\right\rbrace}

Question
Alternate coordinate systems
asked 2021-02-27
The system of equation \begin{cases}2x + y = 1\\4x +2y = 3\end{cases} by graphing method and if the system has no solution then the solution is inconsistent.
Given: The linear equations is \begin{cases}2x + y = 1\\4x +2y = 3\end{cases}

Answers (1)

2021-02-28
Calculation:
The first equation is given below.
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{2}\right\rbrace}{\left\lbrace{x}\right\rbrace}+{\left\lbrace{y}\right\rbrace}={\left\lbrace{1}\right\rbrace}\ldots{\left\lbrace{\left({\left\lbrace{1}\right\rbrace}\right)}\right\rbrace}\)
The second equation is given below
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{4}\right\rbrace}{\left\lbrace{x}\right\rbrace}+{\left\lbrace{2}\right\rbrace}{\left\lbrace{y}\right\rbrace}={\left\lbrace{3}\right\rbrace}\ldots{\left\lbrace{\left({\left\lbrace{2}\right\rbrace}\right)}\right\rbrace}\)
Step 1:
Write the equation (1) in slope-intercept standard form as follows:
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{2}\right\rbrace}{\left\lbrace{x}\right\rbrace}+{\left\lbrace{y}\right\rbrace}={\left\lbrace{1}\right\rbrace}\)
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{y}\right\rbrace}={\left\lbrace{1}\right\rbrace}-{\left\lbrace{2}\right\rbrace}{\left\lbrace{x}\right\rbrace}\)
Compare the equation \(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{y}\right\rbrace}=-{\left\lbrace{2}\right\rbrace}{\left\lbrace{x}\right\rbrace}+{\left\lbrace{1}\right\rbrace}\) with the slope-intercept form \(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{y}\right\rbrace}={\left\lbrace{m}\right\rbrace}{\left\lbrace{x}\right\rbrace}+{\left\lbrace{c}\right\rbrace}\).
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{m}\right\rbrace}=-{\left\lbrace{2}\right\rbrace}\)
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{c}\right\rbrace}={\left\lbrace{1}\right\rbrace}\)
Therefore, the value of slope m is -2 and c is 1.
Thus, the value of y-intercept (0, c) is (0, 1).
Subtitute 0 for y in equation \(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{y}\right\rbrace}=-{\left\lbrace{2}\right\rbrace}{\left\lbrace{x}\right\rbrace}+{\left\lbrace{1}\right\rbrace}\) to obtain the value of x-intercept.
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{0}\right\rbrace}=-{\left\lbrace{2}\right\rbrace}{\left\lbrace{x}\right\rbrace}+{\left\lbrace{1}\right\rbrace}\)
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le-{\left\lbrace{1}\right\rbrace}=-{\left\lbrace{2}\right\rbrace}{\left\lbrace{x}\right\rbrace}\)
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{x}\right\rbrace}={\left\lbrace{\frac{{{\left\lbrace{\left\lbrace{1}\right\rbrace}\right\rbrace}}}{{{\left\lbrace{\left\lbrace{2}\right\rbrace}\right\rbrace}}}}\right\rbrace}\)
Therefore, the x-intercept is \(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{\left({\left\lbrace{\frac{{{\left\lbrace{\left\lbrace{1}\right\rbrace}\right\rbrace}}}{{{\left\lbrace{\left\lbrace{2}\right\rbrace}\right\rbrace}}}}\right\rbrace},{\left\lbrace{0}\right\rbrace}\right)}\right\rbrace}.\)
Join the points (0, 1) and \(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{\left({\left\lbrace{\frac{{{\left\lbrace{\left\lbrace{1}\right\rbrace}\right\rbrace}}}{{{\left\lbrace{\left\lbrace{2}\right\rbrace}\right\rbrace}}}}\right\rbrace},{\left\lbrace{0}\right\rbrace}\right)}\right\rbrace}\) to make a line on the graph as shown below in Figure 1:
image
Step 2:
Write the equation (2) in slope-intercept standard form as follows:
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{4}\right\rbrace}{\left\lbrace{x}\right\rbrace}+{\left\lbrace{2}\right\rbrace}{\left\lbrace{y}\right\rbrace}={\left\lbrace{3}\right\rbrace}\)
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{2}\right\rbrace}{\left\lbrace{y}\right\rbrace}=-{\left\lbrace{4}\right\rbrace}{\left\lbrace{x}\right\rbrace}+{\left\lbrace{3}\right\rbrace}\)
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{y}\right\rbrace}=-{\left\lbrace{\frac{{{\left\lbrace-{\left\lbrace{4}\right\rbrace}\right\rbrace}}}{{{\left\lbrace{\left\lbrace{2}\right\rbrace}\right\rbrace}}}}\right\rbrace}{\left\lbrace{x}\right\rbrace}+{\left\lbrace{\frac{{{\left\lbrace{\left\lbrace{3}\right\rbrace}\right\rbrace}}}{{{\left\lbrace{\left\lbrace{2}\right\rbrace}\right\rbrace}}}}\right\rbrace}\)
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{y}\right\rbrace}=-{\left\lbrace{2}\right\rbrace}{\left\lbrace{x}\right\rbrace}+{\frac{{{3}}}{{{\left\lbrace{2}\right\rbrace}}}}\)
Compare the equation \(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{y}\right\rbrace}=-{\left\lbrace{2}\right\rbrace}{\left\lbrace{x}\right\rbrace}+{\left\lbrace{\frac{{{\left\lbrace{\left\lbrace{3}\right\rbrace}\right\rbrace}}}{{{\left\lbrace{\left\lbrace{2}\right\rbrace}\right\rbrace}}}}\right\rbrace}\) with the slope-intercept form \(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{y}\right\rbrace}={\left\lbrace{m}\right\rbrace}{\left\lbrace{x}\right\rbrace}+{\left\lbrace{c}\right\rbrace}\)
. \(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{m}\right\rbrace}=-{\left\lbrace{2}\right\rbrace}\)
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{c}\right\rbrace}={\left\lbrace{\frac{{{\left\lbrace{\left\lbrace{3}\right\rbrace}\right\rbrace}}}{{{\left\lbrace{\left\lbrace{2}\right\rbrace}\right\rbrace}}}}\right\rbrace}\)
Therefore, the value of slope m is -2 and c is \(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{\frac{{{\left\lbrace{\left\lbrace{3}\right\rbrace}\right\rbrace}}}{{{\left\lbrace{\left\lbrace{2}\right\rbrace}\right\rbrace}}}}\right\rbrace}\)
Thus, the value of y-intercept (0, c) is \(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le\le{\left\lbrace{f}\right\rbrace}{\left\lbrace{t}\right\rbrace}{\left\lbrace{\left({\left\lbrace{\frac{{{\left\lbrace{\left\lbrace{x}\right\rbrace}^{{{2}}}\right\rbrace}}}{{{\left\lbrace{\left\lbrace{y}\right\rbrace}^{{{3}}}\right\rbrace}}}}\right\rbrace}\right)}\right\rbrace}\)
Substitute 0 for y in equation \(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{y}\right\rbrace}=-{\left\lbrace{2}\right\rbrace}{\left\lbrace{x}\right\rbrace}+{\left\lbrace{\frac{{{\left\lbrace{\left\lbrace{3}\right\rbrace}\right\rbrace}}}{{{\left\lbrace{\left\lbrace{2}\right\rbrace}\right\rbrace}}}}\right\rbrace}\) to obtain the value of x-intercept.
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{0}\right\rbrace}=-{\left\lbrace{2}\right\rbrace}{\left\lbrace{x}\right\rbrace}+{\left\lbrace{\frac{{{\left\lbrace{\left\lbrace{3}\right\rbrace}\right\rbrace}}}{{{\left\lbrace{\left\lbrace{2}\right\rbrace}\right\rbrace}}}}\right\rbrace}\)
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le-{\left\lbrace{\frac{{{\left\lbrace{\left\lbrace{3}\right\rbrace}\right\rbrace}}}{{{\left\lbrace{\left\lbrace{2}\right\rbrace}\right\rbrace}}}}\right\rbrace}=-{\left\lbrace{2}\right\rbrace}{\left\lbrace{x}\right\rbrace}\)
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{x}\right\rbrace}={\left\lbrace{\frac{{{\left\lbrace{\left\lbrace{3}\right\rbrace}\right\rbrace}}}{{{\left\lbrace{\left\lbrace{4}\right\rbrace}\right\rbrace}}}}\right\rbrace}\)
Thus, the x-intercept is \(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{\left({\left\lbrace{0}\right\rbrace},{\left\lbrace{\frac{{{\left\lbrace{\left\lbrace{3}\right\rbrace}\right\rbrace}}}{{{\left\lbrace{\left\lbrace{4}\right\rbrace}\right\rbrace}}}}\right\rbrace}\right)}\right\rbrace}\)
Join the points \(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{\left({\left\lbrace{0}\right\rbrace},{\left\lbrace{\frac{{{\left\lbrace{\left\lbrace{3}\right\rbrace}\right\rbrace}}}{{{\left\lbrace{\left\lbrace{2}\right\rbrace}\right\rbrace}}}}\right\rbrace}\right)}\right\rbrace}{\left\lbrace\quad\text{and}\quad\right\rbrace}{\left\lbrace{\left({\left\lbrace{\frac{{{\left\lbrace{\left\lbrace{3}\right\rbrace}\right\rbrace}}}{{{\left\lbrace{\left\lbrace{4}\right\rbrace}\right\rbrace}}}}\right\rbrace},{\left\lbrace{0}\right\rbrace}\right)}\right\rbrace}\) to make a line on the same graph of Figure 1 then the updated graph is shown below in Figure 2.
image
Step 3:
From Figure 2, it is observed that there is no point of intersection of lines.
Therefore, the lines never meet and are parallel to each so the system has no solution in the systems of linear equations.
Thus, the system is inconsistent and the system has no solution as shown below in Figure 2.
0

Relevant Questions

asked 2020-10-21

To solve:
\(\displaystyle{\left(\begin{matrix}{x}-{2}{y}={2}\\{2}{x}+{3}{y}={11}\\{y}-{4}{z}=-{7}\end{matrix}\right)}\)

asked 2021-02-26

The reason ehy the point \((-1, \frac{3\pi}{2})\) lies on the polar graph \(r=1+\cos \theta\) even though it does not satisfy the equation.

asked 2021-01-31

The quadratic function \(\displaystyle{y}={a}{x}^{2}+{b}{x}+{c}\) whose graph passes through the points (1, 4), (2, 1) and (3, 4).

asked 2020-11-14

Consider the bases \(B = \left(\begin{array}{c}\begin{bmatrix}2 \\ 3 \end{bmatrix}, \begin{bmatrix}3 \\ 5 \end{bmatrix}\end{array}\right) of R^2 \ and\ C = \left(\begin{array}{c}\begin{bmatrix}1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix}1\\0 \\ 1 \end{bmatrix}\end{array}, \begin{bmatrix}0 \\ 1\\1 \end{bmatrix}\right) of R^3\).
and the linear maps \(S \in L (R^2, R^3) \ and\ T \in L(R^3, R^2)\) given given (with respect to the standard bases) by \([S]_{E, E} = \begin{bmatrix}2 & -1 \\ 5 & -3\\ -3 & 2 \end{bmatrix} \ and\ [T]_{E, E} = \begin{bmatrix}1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}\) Find each of the following coordinate representations. \(\displaystyle{\left({b}\right)}{\left[{S}\right]}_{{{E},{C}}}\)
\(\displaystyle{\left({c}\right)}{\left[{S}\right]}_{{{B},{C}}}\)

asked 2020-12-17

The coordinate vector of \(\displaystyle{\left[{\mathbf{{{p}}}}\ {\left({t}\right)}\ =\ {6}\ +\ {3}{t}\ -{t}^{{{2}}}\right]}\) relative to the basis \(\displaystyle \mathscr{\left\lbrace{B}\right\rbrace}\ ={\left\lbrace{1}\ +\ {t},\ {1}\ +\ {t}^{{{2}}},\ {t}\ +\ {t}^{{{2}}}\right\rbrace}\)

asked 2021-01-19

Let \(B = \left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix}2 \\1 \end{bmatrix} \right\} \ and\ C = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix}1 \\3 \end{bmatrix} \right\}\)
be bases for\(\displaystyle{R}^{{2}}.\) Change-of-coordinate matrix from C to B.

asked 2021-02-14

All bases considered in these are assumed to be ordered bases. In Exercise, compute the coordinate vector of v with respect to the giving basis S for V. V is \(R^2, S = \left\{ \begin{bmatrix}1 \\ 0 \end{bmatrix}\begin{bmatrix} 0 \\1 \end{bmatrix} \right\}, v = \begin{bmatrix} 3 \\-2 \end{bmatrix} \)

asked 2020-10-25

Let B and C be the following ordered bases of \(\displaystyle{R}^{{3}}:\)
\(B = (\begin{bmatrix}1 \\ 4 \\ -\frac{4}{3} \end{bmatrix},\begin{bmatrix}0 \\ 1 \\ 8 \end{bmatrix},\begin{bmatrix}1 \\ 1 \\ -2 \end{bmatrix})\)
\(C = (\begin{bmatrix}1 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix}1 \\ 4 \\ -\frac{4}{3} \end{bmatrix}, \begin{bmatrix}0 \\ 1 \\ 8 \end{bmatrix})\) Find the change of coordinate matrix I_{CB}

asked 2020-11-03

Interraption: To show that the system \(\displaystyle\dot{{r}}={r}{\left({1}-{r}^{2}\right)},\dot{\theta}={1}\) is equivalent to \(\displaystyle\dot{{x}}={x}-{y}-{x}{\left({x}^{2}+{y}^{2}\right)},\dot{{y}}={x}+{y}-{y}{\left({x}^{2}+{y}^{2}\right)}\) for polar to Cartesian coordinates.
A limit cycle is a closed trajectory. Isolated means that neighboring trajectories are not closed.
A limit cycle is said to be unstable or half stable, if all neighboring trajectories approach the lemin cycle.
These systems oscillate even in the absence of external periodic force.

asked 2021-02-08

To find: The equivalent polar equation for the given rectangular-coordinate equation.
Given:
\(\displaystyle{x}^{2}+{y}^{2}+{8}{x}={0}\)

...