What can you say about the accuracy of your measurements? What can you say about the precision of your measurements? (Measure the longest dimension of the room twice, using two different techniques. Do the measurement in feet and inches. Then convert to meters.) Below is what I got. Tape Measure - 146 inches > 3.7084 meters / 12 feet and 2 inches = 12.1667 feet > 3.70840 meters Ruler - 144.5 inches (144 + 1/2) = 3.6703 meters / 12.0416 feet = 3.67027 meters

Question
Measurement
asked 2021-02-08
What can you say about the accuracy of your measurements?
What can you say about the precision of your measurements?
(Measure the longest dimension of the room twice, using two different techniques. Do the measurement in feet and inches. Then convert to meters.) Below is what I got.
\(Tape Measure - 146 inches > 3.7084 meters / 12 feet and 2 inches = 12.1667 feet > 3.70840 meters\)
\(Ruler - 144.5 inches (144 + 1/2) = 3.6703 meters / 12.0416 feet = 3.67027 meters\)

Answers (1)

2021-02-09
Step 1
Let's first understand the two terms:
Accuracy:
Accuracy of a measurement is measure of how close the measured value is to the true value of the quantity.
And
Precision:
Precision of a measurement tells us to what resolution or limit the quantity is measured.
Let's understand the two terms with an example.
Step 2
Suppose true value of length of a rod is 5.693cm.
Now you measure the length of this rod
In first measurement you measure with an instrument of resolution 0.1cm gives value 5.5cm.
In second measurement you measure the same length with an instrument of resolution 0.01cm given value 5.38cm.
Then the first measurement has more accuracy than second measurement since it is closure to the true value of the length, but less precision. While the second measurement has more precision than first measurement since it measures to the higher resolution, but has less accuracy.
So to your given measurements first you need to find out which instrument (tap or ruler) has more resolution based on that you can tell which one has more precision and more accuracy.
0

Relevant Questions

asked 2021-02-13
1.After several tries of measuring, Lydia gets the results of 2.75, 2.76, 2.30 cm. She realized that the results of measurement is closest to the actual measurement which is 3.25. What is the implication of her measurements? Is it Accurate and precise?
2.I measured the length of cabinet 3 times. The results of my measurements are 3.44 m, 3.55 m, 3.47 m. Afterwards, I compared it to the results with each other. What did I was trying to find out? Is it precision?
asked 2021-01-13
Loretta, who turns eighty this year, has just learned about blood pressure problems in the elderly and is interested in how her blood pressure compares to those of her peers. Specifically, she is interested in her systolic blood pressure, which can be problematic among the elderly. She has uncovered an article in a scientific journal that reports that the mean systolic blood pressure measurement for women over seventy-five is 133.0 mmHg, with a standard deviation of 5.1 mmHg.
Assume that the article reported correct information. Complete the following statements about the distribution of systolic blood pressure measurements for women over seventy-five.
a) According to Chebyshev's theorem, at least \(?36\% 56\% 75\% 84\%\ or\ 89\%\) of the measurements lie between 122.8 mmHg and 143.2 mmHg.
b) According to Chebyshev's theorem, at least \(8/9 (about\ 89\%)\) of the measurements lie between mmHg and mmHg. (Round your answer to 1 decimal place.)
asked 2020-10-23
The table below shows the number of people for three different race groups who were shot by police that were either armed or unarmed. These values are very close to the exact numbers. They have been changed slightly for each student to get a unique problem.
Suspect was Armed:
Black - 543
White - 1176
Hispanic - 378
Total - 2097
Suspect was unarmed:
Black - 60
White - 67
Hispanic - 38
Total - 165
Total:
Black - 603
White - 1243
Hispanic - 416
Total - 2262
Give your answer as a decimal to at least three decimal places.
a) What percent are Black?
b) What percent are Unarmed?
c) In order for two variables to be Independent of each other, the P \((A and B) = P(A) \cdot P(B) P(A and B) = P(A) \cdot P(B).\)
This just means that the percentage of times that both things happen equals the individual percentages multiplied together (Only if they are Independent of each other).
Therefore, if a person's race is independent of whether they were killed being unarmed then the percentage of black people that are killed while being unarmed should equal the percentage of blacks times the percentage of Unarmed. Let's check this. Multiply your answer to part a (percentage of blacks) by your answer to part b (percentage of unarmed).
Remember, the previous answer is only correct if the variables are Independent.
d) Now let's get the real percent that are Black and Unarmed by using the table?
If answer c is "significantly different" than answer d, then that means that there could be a different percentage of unarmed people being shot based on race. We will check this out later in the course.
Let's compare the percentage of unarmed shot for each race.
e) What percent are White and Unarmed?
f) What percent are Hispanic and Unarmed?
If you compare answers d, e and f it shows the highest percentage of unarmed people being shot is most likely white.
Why is that?
This is because there are more white people in the United States than any other race and therefore there are likely to be more white people in the table. Since there are more white people in the table, there most likely would be more white and unarmed people shot by police than any other race. This pulls the percentage of white and unarmed up. In addition, there most likely would be more white and armed shot by police. All the percentages for white people would be higher, because there are more white people. For example, the table contains very few Hispanic people, and the percentage of people in the table that were Hispanic and unarmed is the lowest percentage.
Think of it this way. If you went to a college that was 90% female and 10% male, then females would most likely have the highest percentage of A grades. They would also most likely have the highest percentage of B, C, D and F grades
The correct way to compare is "conditional probability". Conditional probability is getting the probability of something happening, given we are dealing with just the people in a particular group.
g) What percent of blacks shot and killed by police were unarmed?
h) What percent of whites shot and killed by police were unarmed?
i) What percent of Hispanics shot and killed by police were unarmed?
You can see by the answers to part g and h, that the percentage of blacks that were unarmed and killed by police is approximately twice that of whites that were unarmed and killed by police.
j) Why do you believe this is happening?
Do a search on the internet for reasons why blacks are more likely to be killed by police. Read a few articles on the topic. Write your response using the articles as references. Give the websites used in your response. Your answer should be several sentences long with at least one website listed. This part of this problem will be graded after the due date.
asked 2020-12-25
Why can a null measurement be more accurate than one using standard voltmeters and ammeters?
What factors limit the accuracy of null measurements?
asked 2021-03-06
Standard deviation is an indication of the...
a. precision of one measurement
b. accuracy of one measurement.
c. precision of repeated measurements.
asked 2020-11-06
What are two advantages of using meters as a measurement of length than old measurements of length such as hands or steps
asked 2020-12-24
Juan makes a measurement in a chemistry laboratory and records the result in his lab report. The stardard deviation of lab measurements made by students is \(\sigma=10\) milligrams. Juan repeats the measurement 3 times and records the mean xbar of his 3 measurements.
(a) What is the standard deviation of Juan's mean result? (That is, if Juan kept making sets of 3 measurements and averaging them, what would be the standard deviation of all his xbar's?)
(b) How many times must juan repeat the measurement to reduce the standard deviation of xbar to5? Explain to someone who knows nothing about statistics the advantage of reporting the average of several measurements rather than the result of a single measurement.
asked 2021-02-23
1. A researcher is interested in finding a 98% confidence interval for the mean number of times per day that college students text. The study included 144 students who averaged 44.7 texts per day. The standard deviation was 16.5 texts. a. To compute the confidence interval use a ? z t distribution. b. With 98% confidence the population mean number of texts per day is between and texts. c. If many groups of 144 randomly selected members are studied, then a different confidence interval would be produced from each group. About percent of these confidence intervals will contain the true population number of texts per day and about percent will not contain the true population mean number of texts per day. 2. You want to obtain a sample to estimate how much parents spend on their kids birthday parties. Based on previous study, you believe the population standard deviation is approximately \(\displaystyle\sigma={40.4}\) dollars. You would like to be 90% confident that your estimate is within 1.5 dollar(s) of average spending on the birthday parties. How many parents do you have to sample? n = 3. You want to obtain a sample to estimate a population mean. Based on previous evidence, you believe the population standard deviation is approximately \(\displaystyle\sigma={57.5}\). You would like to be 95% confident that your estimate is within 0.1 of the true population mean. How large of a sample size is required?
asked 2020-12-25
Case: Dr. Jung’s Diamonds Selection
With Christmas coming, Dr. Jung became interested in buying diamonds for his wife. After perusing the Web, he learned about the “4Cs” of diamonds: cut, color, clarity, and carat. He knew his wife wanted round-cut earrings mounted in white gold settings, so he immediately narrowed his focus to evaluating color, clarity, and carat for that style earring.
After a bit of searching, Dr. Jung located a number of earring sets that he would consider purchasing. But he knew the pricing of diamonds varied considerably. To assist in his decision making, Dr. Jung decided to use regression analysis to develop a model to predict the retail price of different sets of round-cut earrings based on their color, clarity, and carat scores. He assembled the data in the file Diamonds.xls for this purpose. Use this data to answer the following questions for Dr. Jung.
1) Prepare scatter plots showing the relationship between the earring prices (Y) and each of the potential independent variables. What sort of relationship does each plot suggest?
2) Let X1, X2, and X3 represent diamond color, clarity, and carats, respectively. If Dr. Jung wanted to build a linear regression model to estimate earring prices using these variables, which variables would you recommend that he use? Why?
3) Suppose Dr. Jung decides to use clarity (X2) and carats (X3) as independent variables in a regression model to predict earring prices. What is the estimated regression equation? What is the value of the R2 and adjusted-R2 statistics?
4) Use the regression equation identified in the previous question to create estimated prices for each of the earring sets in Dr. Jung’s sample. Which sets of earrings appear to be overpriced and which appear to be bargains? Based on this analysis, which set of earrings would you suggest that Dr. Jung purchase?
5) Dr. Jung now remembers that it sometimes helps to perform a square root transformation on the dependent variable in a regression problem. Modify your spreadsheet to include a new dependent variable that is the square root on the earring prices (use Excel’s SQRT( ) function). If Dr. Jung wanted to build a linear regression model to estimate the square root of earring prices using the same independent variables as before, which variables would you recommend that he use? Why?
1
6) Suppose Dr. Jung decides to use clarity (X2) and carats (X3) as independent variables in a regression model to predict the square root of the earring prices. What is the estimated regression equation? What is the value of the R2 and adjusted-R2 statistics?
7) Use the regression equation identified in the previous question to create estimated prices for each of the earring sets in Dr. Jung’s sample. (Remember, your model estimates the square root of the earring prices. So you must actually square the model’s estimates to convert them to price estimates.) Which sets of earring appears to be overpriced and which appear to be bargains? Based on this analysis, which set of earrings would you suggest that Dr. Jung purchase?
8) Dr. Jung now also remembers that it sometimes helps to include interaction terms in a regression model—where you create a new independent variable as the product of two of the original variables. Modify your spreadsheet to include three new independent variables, X4, X5, and X6, representing interaction terms where: X4 = X1 × X2, X5 = X1 × X3, and X6 = X2 × X3. There are now six potential independent variables. If Dr. Jung wanted to build a linear regression model to estimate the square root of earring prices using the same independent variables as before, which variables would you recommend that he use? Why?
9) Suppose Dr. Jung decides to use color (X1), carats (X3) and the interaction terms X4 (color * clarity) and X5 (color * carats) as independent variables in a regression model to predict the square root of the earring prices. What is the estimated regression equation? What is the value of the R2 and adjusted-R2 statistics?
10) Use the regression equation identified in the previous question to create estimated prices for each of the earring sets in Dr. Jung’s sample. (Remember, your model estimates the square root of the earring prices. So you must square the model’s estimates to convert them to actual price estimates.) Which sets of earrings appear to be overpriced and which appear to be bargains? Based on this analysis, which set of earrings would you suggest that Dr. Jung purchase?
asked 2021-02-21
A measurement using a ruler marked in centimeters is reported as 6 cm. What is the range of values for the actual measurement?
...