Contain linear equations with constants in denominators. Solve each equation \displaystyle\frac{{{5}+{x}-{2}}}{{3}}=\frac{{{x}+{3}}}{{8}}

Contain linear equations with constants in denominators. Solve each equation \displaystyle\frac{{{5}+{x}-{2}}}{{3}}=\frac{{{x}+{3}}}{{8}}

Question
Contain linear equations with constants in denominators. Solve each equation
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\frac{{{\left\lbrace{\left\lbrace{5}\right\rbrace}+{\left\lbrace{x}\right\rbrace}-{\left\lbrace{2}\right\rbrace}\right\rbrace}}}{{{\left\lbrace{3}\right\rbrace}}}}={\frac{{{\left\lbrace{\left\lbrace{x}\right\rbrace}+{\left\lbrace{3}\right\rbrace}\right\rbrace}}}{{{\left\lbrace{8}\right\rbrace}}}}\)

Answers (1)

2021-02-13
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\frac{{{\left\lbrace{\left\lbrace{5}\right\rbrace}+{\left\lbrace{x}\right\rbrace}-{\left\lbrace{2}\right\rbrace}\right\rbrace}}}{{{\left\lbrace{3}\right\rbrace}}}}={\frac{{{\left\lbrace{\left\lbrace{x}\right\rbrace}+{\left\lbrace{3}\right\rbrace}\right\rbrace}}}{{{\left\lbrace{8}\right\rbrace}}}}\)
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\frac{{{\left\lbrace{\left\lbrace{5}\right\rbrace}+{\left\lbrace{x}\right\rbrace}-{\left\lbrace{2}\right\rbrace}\right\rbrace}}}{{{\left\lbrace{3}\right\rbrace}}}}={\frac{{{\left\lbrace{\left\lbrace{x}\right\rbrace}+{\left\lbrace{3}\right\rbrace}\right\rbrace}}}{{{\left\lbrace{8}\right\rbrace}}}}\)
Multiply both sides by \(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{3}\right\rbrace}\times{\left\lbrace{8}\right\rbrace}={\left\lbrace{24}\right\rbrace}\)
Note that 24 is a product of 3 and 8, Which are the denominators of the fractions in LHS and RHS
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{24}\right\rbrace}\times{\left\lbrace{5}\right\rbrace}+{\left\lbrace{24}\right\rbrace}{\frac{{{\left\lbrace{\left\lbrace{x}\right\rbrace}-{\left\lbrace{2}\right\rbrace}\right\rbrace}}}{{{\left\lbrace{3}\right\rbrace}}}}={\left\lbrace{24}\right\rbrace}\times{\frac{{{\left\lbrace{\left\lbrace{x}\right\rbrace}+{\left\lbrace{3}\right\rbrace}\right\rbrace}}}{{{\left\lbrace{8}\right\rbrace}}}}\)
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{120}\right\rbrace}+{\left\lbrace{8}\right\rbrace}{\left\lbrace{\left({\left\lbrace{x}\right\rbrace}-{\left\lbrace{2}\right\rbrace}\right)}\right\rbrace}={\left\lbrace{3}\right\rbrace}{\left\lbrace{\left({\left\lbrace{x}\right\rbrace}+{\left\lbrace{3}\right\rbrace}\right)}\right\rbrace}\)
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{120}\right\rbrace}+{\left\lbrace{8}\right\rbrace}{\left\lbrace{x}\right\rbrace}-{\left\lbrace{16}\right\rbrace}={\left\lbrace{3}\right\rbrace}{\left\lbrace{x}\right\rbrace}+{\left\lbrace{9}\right\rbrace}\)
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{8}\right\rbrace}{\left\lbrace{x}\right\rbrace}+{\left\lbrace{104}\right\rbrace}={\left\lbrace{3}\right\rbrace}{\left\lbrace{x}\right\rbrace}+{\left\lbrace{9}\right\rbrace}\)
Subtract 3x from both sides, To get
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{5}\right\rbrace}{\left\lbrace{x}\right\rbrace}+{\left\lbrace{104}\right\rbrace}={\left\lbrace{9}\right\rbrace}\)
Subtract 104 from both sides, To get
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{5}\right\rbrace}{\left\lbrace{x}\right\rbrace}={\left\lbrace{9}\right\rbrace}-{\left\lbrace{104}\right\rbrace}\)
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{b}\right\rbrace}{\left\lbrace{z}\right\rbrace}=-{\left\lbrace{95}\right\rbrace}\)
Divide both sides by 5, To get
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{x}\right\rbrace}={\frac{{{\left\lbrace-{\left\lbrace{95}\right\rbrace}\right\rbrace}}}{{{\left\lbrace{5}\right\rbrace}}}}=-{\left\lbrace{19}\right\rbrace}\)
We get the finally result
\(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{x}\right\rbrace}=-{\left\lbrace{19}\right\rbrace}\)
0

Relevant Questions

asked 2020-11-20
Solve the linear equations by considering y as a function of x, that is, \(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{y}\right\rbrace}={\left\lbrace{y}\right\rbrace}{\left\lbrace{\left({\left\lbrace{x}\right\rbrace}\right)}\right\rbrace}.{\frac{{{\left\lbrace\le{f}{t}.{\left\lbrace{d}\right\rbrace}{\left\lbrace{y}\right\rbrace}{r}{i}{g}{h}{t}.\right\rbrace}}}{{{\left\lbrace\le{f}{t}.{\left\lbrace{d}\right\rbrace}{\left\lbrace{x}\right\rbrace}{r}{i}{g}{h}{t}.\right\rbrace}}}}-{\left\lbrace{2}\right\rbrace}{\frac{{{x}}}{{{\left\lbrace{\left\lbrace{1}\right\rbrace}+{\left\lbrace{x}\right\rbrace}^{{{2}}}\right\rbrace}}}}{\left\lbrace{y}\right\rbrace}={\left\lbrace{x}\right\rbrace}^{{{2}}}\)
asked 2021-02-21
Linear equations of second order with constant coefficients.
Find all solutions on
\(\displaystyle{\left(-\infty,+\infty\right)}.{y}\text{}-{2}{y}'+{5}{y}={0}\)
asked 2021-03-07
Solve the correct answer linear equations by considering y as a function of x, that is, \(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{y}\right\rbrace}={\left\lbrace{y}\right\rbrace}{\left\lbrace{\left({\left\lbrace{x}\right\rbrace}\right)}\right\rbrace}.{\frac{{{\left\lbrace\le{f}{t}.{\left\lbrace{d}\right\rbrace}{\left\lbrace{y}\right\rbrace}{r}{i}{g}{h}{t}.\right\rbrace}}}{{{\left\lbrace\le{f}{t}.{\left\lbrace{d}\right\rbrace}{\left\lbrace{x}\right\rbrace}{r}{i}{g}{h}{t}.\right\rbrace}}}}+{\left\lbrace{y}\right\rbrace}={\cos{{\left\lbrace{\left\lbrace{x}\right\rbrace}\right\rbrace}}}\)
asked 2020-10-28
Solve the linear equations by considering y as a function of x, that is, \(\displaystyle{d}{i}{s}{p}{l}{a}{y}{s}{t}{y}\le{\left\lbrace{y}\right\rbrace}={\left\lbrace{y}\right\rbrace}{\left\lbrace{\left({\left\lbrace{x}\right\rbrace}\right)}\right\rbrace}.{\left\lbrace{x}\right\rbrace}{\left\lbrace{y}\right\rbrace}'+{\left\lbrace{\left({\left\lbrace{1}\right\rbrace}+{\left\lbrace{x}\right\rbrace}\right)}\right\rbrace}{\left\lbrace{y}\right\rbrace}={\left\lbrace{e}\right\rbrace}^{{{\left\lbrace-{\left\lbrace{x}\right\rbrace}\right\rbrace}}}{\sin{{\left\lbrace{\left\lbrace{2}\right\rbrace}\right\rbrace}}}{\left\lbrace{x}\right\rbrace}\)
asked 2021-01-04
Verify that the given functions form a basis of solutions of the given equation and solve the given initial value problem.
\(4x^2-3y=0,\ y(1)=3,\ y'(1)=2.5,\) the basis of solution are \(y_1=x^{-\frac{1}{2}}\) and \(y_2=x(\frac{3}{2})\)
asked 2021-02-16
A dynamic system is represented by a second order linear differential equation.
\(2\frac{d^2x}{dt^2}+5\frac{dx}{dt}-3x=0\)
The initial conditions are given as:
when \(t=0,\ x=4\) and \(\frac{dx}{dt}=9\)
Solve the differential equation and obtain the output of the system x(t) as afunction of t.
asked 2021-01-05
Linear equations of second order with constant coefficients. Find all solutions on \(\displaystyle{\left(-\infty,+\infty\right)}.{y}\text{}+{4}{y}={0}\)
asked 2021-05-02
Solve each system of equation. Then, check the solutions by substituting them into the original equations to see if the equations are true.
\(x+2y=8. x=-5\)
asked 2021-02-05
A differential equation and a nontrivial solution f are given below. Find a second linearly independent solution using reduction of order. Assume that all constants of integration are zero.
\(tx''-(2t+1)x+2x=0,\ t>0,\ f(t)=3*e^{2t}\)
asked 2021-01-10
Solve the following IVP for the second order linear equations
\(y''-4y'+9y=0,\ \ y(0)=0,\ \ y'(0)=-8\)
...