Solve differential equation y'+3x^2y= \sin(x)e^{-x^3}, \ y(0)=1

Solve differential equation y'+3x^2y= \sin(x)e^{-x^3}, \ y(0)=1

Question
Solve differential equation \(\displaystyle{y}'+{3}{x}^{{2}}{y}={\sin{{\left({x}\right)}}}{e}^{{-{x}^{{3}}}},\ {y}{\left({0}\right)}={1}\)

Answers (1)

2021-02-22
\(\displaystyle{y}'+{p}{\left({x}\right)}{y}={q}{\left({x}\right)},\ {p}{\left({x}\right)}={3}{x}^{{2}},\ {q}{\left({x}\right)}={\sin{{\left({x}\right)}}}{e}^{{-{x}^{{3}}}}\)
\(\displaystyle{e}^{{\int{p}{\left.{d}{x}\right.}}}={e}^{{\int{3}{x}^{{2}}{\left.{d}{x}\right.}}}\)
\(\displaystyle{e}^{{\int{p}{\left.{d}{x}\right.}}}={e}^{{{\frac{{{3}{x}^{{3}}}}{{{3}}}}}}\)
\(\displaystyle{e}^{{\int{p}{\left.{d}{x}\right.}}}={e}^{{{x}^{{3}}}}\)
That is the I.F. is \(\displaystyle\mu{\left({x}\right)}={e}^{{{x}^{{3}}}}\)
Multiply the integrating factor on both sides of the given equation
\(\displaystyle{e}^{{{x}^{{3}}}}{y}'={\sin{{\left({x}\right)}}}{e}^{{-{x}^{{3}}}}{e}^{{{x}^{{3}}}}\)
\(\displaystyle{e}^{{{x}^{{3}}}}{y}'={\sin{{\left({x}\right)}}}{\left[\because{e}^{{-{x}^{{3}}}}{e}^{{{x}^{{3}}}}={e}^{{-{x}^{{3}}+{x}^{{3}}}}={1}\right]}\)
Integrate both sides of the above equation
\(\displaystyle\int{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left({e}^{{{x}^{{3}}}}{y}\right)}{\left.{d}{x}\right.}=\int{\sin{{\left({x}\right)}}}{\left.{d}{x}\right.}\)
\(\displaystyle{e}^{{{x}^{{3}}}}{y}=-{\cos{{\left({x}\right)}}}+{c}\)
\(\displaystyle{y}={\frac{{-{\cos{{\left({x}\right)}}}+{c}}}{{{e}^{{{x}^{{3}}}}}}}\)
Now compute the value of constant C by applying the given condition as follows
\(\displaystyle{y}{\left({0}\right)}={\frac{{-{\cos{{\left({0}\right)}}}+{c}}}{{{e}^{{{\left({0}\right)}^{{3}}}}}}}\)
\(\displaystyle{1}={\frac{{-{\left({1}\right)}+{c}}}{{{1}}}}\ {\left[\because{\cos{{\left({0}\right)}}}={1}\right]}\)
\(\displaystyle{1}=-{1}+{c}\)
\(\displaystyle{1}+{1}={c}\)
\(\displaystyle{2}={c}\)
Now substitute the value of C for the value of y and simplify further
\(\displaystyle{y}={\frac{{-{\cos{{\left({x}\right)}}}+{2}}}{{{e}^{{{x}^{{3}}}}}}}\)
0

Relevant Questions

asked 2021-02-21
Solve differential equation \(y'-3x^2y= e^(x^3)\)
asked 2020-11-16
Solve differential equation \((6x+1)y^2 dy/dx+3x^2+2y^3=0\), y(0)=1
asked 2021-03-07

Solve differential equation \(\frac{\cos^2y}{4x+2}dy= \frac{(\cos y+\sin y)^2}{\sqrt{x^2+x+3}}dx\)

asked 2020-12-24
Solve differential equation \(\displaystyle{2}{x}{y}-{9}{x}^{{2}}+{\left({2}{y}+{x}^{{2}}+{1}\right)}{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}={0},\ {y}{\left({0}\right)}=-{3}\)
asked 2020-12-29
Solve differential equation \(2xy-9x^2+(2y+x^2+1)dy/dx=0\), y(0)= -3
asked 2021-02-02
Solve differential equation \(y'-y=(3x^2+4x-3)e^x\)
asked 2021-05-16
Consider the following differential equation.
2y''+y'-y=0
For what values of r does the function \(\displaystyle{y}={e}^{{{r}{x}}}\) satisfy the equation?
asked 2020-11-27
Solve differential equation \(\displaystyle{x}{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}-{2}{y}={x}^{{3}}{{\sin}^{{2}}{\left({x}\right)}}\)
asked 2021-01-16
Solve differential equation \(\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}-{\left({\cot{{x}}}\right)}{y}={{\sin}^{{3}}{x}}\)
asked 2020-12-06
Solve differential equation \(\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}-{\left({\cot{{x}}}\right)}{y}={{\sin}^{{3}}{x}}\)
...