Evaluate the integrals. \int \frac{\sin^{-1}x}{\sqrt{1-x^{2}}}dx

Evaluate the integrals. \int \frac{\sin^{-1}x}{\sqrt{1-x^{2}}}dx

Question
Applications of integrals
asked 2021-02-12
Evaluate the integrals.
\(\displaystyle\int{\frac{{{{\sin}^{{-{1}}}{x}}}}{{\sqrt{{{1}-{x}^{{{2}}}}}}}}{\left.{d}{x}\right.}\)

Answers (1)

2021-02-13
Step 1
Consider the provided integral,
\(\displaystyle\int{\frac{{{{\sin}^{{-{1}}}{x}}}}{{\sqrt{{{1}-{x}^{{{2}}}}}}}}{\left.{d}{x}\right.}\)
Evaluate the integrals.
Apply the Substitution method,
\(\displaystyle{u}={{\sin}^{{-{1}}}{x}}\Rightarrow{d}{u}={\frac{{{1}}}{{\sqrt{{{1}-{x}^{{{2}}}}}}}}{\left.{d}{x}\right.}\)
Step 2
Therefore,
\(\displaystyle\int{\frac{{{{\sin}^{{-{1}}}{x}}}}{{\sqrt{{{1}-{x}^{{{2}}}}}}}}{\left.{d}{x}\right.}=\int{u}{d}{u}\)
\(\displaystyle={\frac{{{u}^{{{1}+{1}}}}}{{{1}+{1}}}}+{C}\)
\(\displaystyle={\frac{{{u}^{{{2}}}}}{{{2}}}}+{C}\)
Substitute back \(\displaystyle{u}={{\sin}^{{-{1}}}{x}}\).
\(\displaystyle\int{\frac{{{{\sin}^{{-{1}}}{x}}}}{{\sqrt{{{1}-{x}^{{{2}}}}}}}}{\left.{d}{x}\right.}={\frac{{{\left({{\sin}^{{-{1}}}{x}}\right)}^{{{2}}}}}{{{2}}}}+{C}\)
\(\displaystyle={\frac{{{1}}}{{{2}}}}{\left({{\sin}^{{-{1}}}{x}}\right)}^{{{2}}}+{C}\)
Hence.
0

Relevant Questions

asked 2021-05-23
Evaluate each of the following integrals.
\(\int\frac{e^{x}}{1+e^{x}}dx\)
asked 2021-05-26
use the table of integrals to evaluate the following integral.
\(\int 3x \sqrt{6x-x^2}dx\)
asked 2021-05-28
Evaluate the following integral.
\(\int \frac{3x^{2}+\sqrt{x}}{\sqrt{x}}dx\)
asked 2021-05-29
Evaluate the ff, improper integrals.
\(\int_{1}^{\infty}\frac{1}{x^{3}}dx\)
asked 2021-05-29
Evaluate the following integral: \(\int \frac{x+3}{x-1}dx\)
asked 2021-05-23
Find the indefinite integral \(\int \ln(\frac{x}{3})dx\) (a) using a table of integrals and (b) using the Integration by parts method.
asked 2021-06-12
Explain why each of the following integrals is improper.
(a) \(\int_6^7 \frac{x}{x-6}dx\)
-Since the integral has an infinite interval of integration, it is a Type 1 improper integral.
-Since the integral has an infinite discontinuity, it is a Type 2 improper integral.
-The integral is a proper integral.
(b)\(\int_0^{\infty} \frac{1}{1+x^3}dx\)
Since the integral has an infinite interval of integration, it is a Type 1 improper integral.
Since the integral has an infinite discontinuity, it is a Type 2 improper integral.
The integral is a proper integral.
(c) \(\int_{-\infty}^{\infty}x^2 e^{-x^2}dx\)
-Since the integral has an infinite interval of integration, it is a Type 1 improper integral.
-Since the integral has an infinite discontinuity, it is a Type 2 improper integral.
-The integral is a proper integral.
d)\(\int_0^{\frac{\pi}{4}} \cot x dx\)
-Since the integral has an infinite interval of integration, it is a Type 1 improper integral.
-Since the integral has an infinite discontinuity, it is a Type 2 improper integral.
-The integral is a proper integral.
asked 2021-05-23
Evaluate the ff, improper integrals.
\(\int_{-2}^{\infty}\sin x dx\)
asked 2021-06-03
Evaluate each of the following integrals.
\(\int_{0}^{2}(x^{2}+2x-3)^{3}(4x+4)dx\)
asked 2021-05-23
Use a change of variables to evaluate the following integral.
\(\int-(\cos^{7}x-5\cos^{5}x-\cos x)\sin x dx\)
...