Evaluate the following integrals. \int sin^{2}0 \cos^{5} 0d0

Evaluate the following integrals. \int sin^{2}0 \cos^{5} 0d0

Question
Applications of integrals
asked 2021-02-16
Evaluate the following integrals.
\(\displaystyle\int{{\sin}^{{{2}}}{0}}{{\cos}^{{{5}}}{0}}{d}{0}\)

Answers (1)

2021-02-17
Step 1
Consider the provided integral,
\(\displaystyle\int{{\sin}^{{{2}}}{0}}{{\cos}^{{{5}}}{0}}{d}{0}\)
Evaluate the following integrals.
Using the trigonometric identity,
\(\displaystyle{{\sin}^{{{2}}}{\left({0}\right)}}{{\cos}^{{{5}}}{\left({0}\right)}}{d}{0}=\int{\left({1}-{{\sin}^{{{2}}}{\left({0}\right)}}\right)}^{{{2}}}{\cos{{\left({0}\right)}}}{{\sin}^{{{2}}}{\left({0}\right)}}{d}{0}\)
Apply u-Substitution method,
\(\displaystyle{u}={\sin{{0}}}\Rightarrow{d}{u}={\cos{{0}}}{d}{0}\)
Step 2
Therefore,
\(\displaystyle\int{{\sin}^{{{2}}}{\left({0}\right)}}{{\cos}^{{{5}}}{\left({0}\right)}}{d}{0}=\int{u}^{{{2}}}{\left({1}-{u}^{{{2}}}\right)}^{{{2}}}{d}{u}\)
\(\displaystyle=\int{u}^{{{2}}}-{2}{u}^{{{4}}}+{u}^{{{6}}}{d}{u}\)
\(\displaystyle=\int{u}^{{{2}}}{d}{u}-\int{2}{u}^{{{4}}}{d}{u}+\int{u}^{{{6}}}{d}{u}\)
\(\displaystyle={\frac{{{u}^{{{3}}}}}{{{3}}}}-{\frac{{{2}{u}^{{{5}}}}}{{{5}}}}+{\frac{{{u}^{{{7}}}}}{{{7}}}}+{C}\)
Substitute back,
\(\displaystyle\int{{\sin}^{{{2}}}{\left({0}\right)}}{{\cos}^{{{5}}}{\left({0}\right)}}{d}{0}={\frac{{{{\sin}^{{{3}}}{0}}}}{{{3}}}}-{\frac{{{2}{{\sin}^{{{5}}}{0}}}}{{{5}}}}+{\frac{{{{\sin}^{{{7}}}{0}}}}{{{7}}}}+{C}\)
Hence.
0

Relevant Questions

asked 2021-02-19
Trigonometric integral Evaluate the following integrals.
\(\displaystyle\int{{\sin}^{{2}}{0}}{{\cos}^{{5}}{0}}{d}{0}\)
asked 2020-12-28
Use the table of integrals at the back of the text to evaluate the integrals \(\displaystyle\int{8}{\sin{{\left({4}{t}\right)}}}{\sin{{\left({\frac{{{t}}}{{{2}}}}\right)}}}{\left.{d}{t}\right.}\)
asked 2021-02-12
Evaluate the integrals.
\(\displaystyle\int{\frac{{{{\sin}^{{-{1}}}{x}}}}{{\sqrt{{{1}-{x}^{{{2}}}}}}}}{\left.{d}{x}\right.}\)
asked 2021-02-21
Evaluate the integral using the indicated substitution.
\(\displaystyle\int{{\cos}^{{{2}}}{x}}{\sin{{x}}}{\left.{d}{x}\right.},\ {u}={\cos{{x}}}\)
asked 2020-11-08
Evaluate the following integrals.
\(\displaystyle\int{\left({2}{x}^{{{3}}}-{x}^{{{2}}}+{3}{x}-{7}\right)}{\left.{d}{x}\right.}\)
asked 2021-01-06
Evaluate the following integrals.
\(\displaystyle\int\frac{{{\left.{d}{x}\right.}}}{{{x}^{{3}}-{x}^{{2}}}}\)
asked 2021-01-28
Evaluate the integrals using a table of integrals.
\(\displaystyle\int{x}{{\sin}^{{-{{1}}}}{2}}{x}{\left.{d}{x}\right.}\)
asked 2021-02-15
Evaluate the integrals \(\displaystyle\int\frac{{\cos{{\left({1}-{\ln{{y}}}\right)}}}}{{y}}{\left.{d}{y}\right.}\)
asked 2020-10-23
Evaluate the following integrals.
\(\displaystyle\int{\frac{{{\left.{d}{x}\right.}}}{{\sqrt{{{\left({x}-{1}\right)}{\left({3}-{x}\right)}}}}}}\)
asked 2020-12-02
Evaluate the following integrals.
\(\displaystyle\int\frac{{{\left.{d}{x}\right.}}}{{\sqrt{{{\left({x}-{1}\right)}{\left({3}-{x}\right)}}}}}\)
...