Question

Evaluate the following integrals. \int \frac{dx}{\sqrt{(x-1)(3-x)}}

Applications of integrals
ANSWERED
asked 2020-10-23
Evaluate the following integrals.
\(\displaystyle\int{\frac{{{\left.{d}{x}\right.}}}{{\sqrt{{{\left({x}-{1}\right)}{\left({3}-{x}\right)}}}}}}\)

Answers (1)

2020-10-24
Step 1: Given that
\(\displaystyle\int{\frac{{{\left.{d}{x}\right.}}}{{\sqrt{{{\left({x}-{1}\right)}{\left({3}-{x}\right)}}}}}}\)
Step 2: Formula Used
\(\displaystyle\int{\frac{{{1}}}{{\sqrt{{{a}^{{{2}}}-{x}^{{{2}}}}}}}}{\left.{d}{x}\right.}={{\sin}^{{-{1}}}{\left({\frac{{{x}}}{{{a}}}}\right)}}+{C}\)
Step 3: Solve
We have,
\(\displaystyle\int{\frac{{{\left.{d}{x}\right.}}}{{\sqrt{{{\left({x}-{1}\right)}{\left({3}-{x}\right)}}}}}}=\int{\frac{{{\left.{d}{x}\right.}}}{{\sqrt{{{3}{x}-{x}^{{{2}}}-{3}+{x}}}}}}\)
\(\displaystyle=\int{\frac{{{\left.{d}{x}\right.}}}{{\sqrt{{-{x}^{{{2}}}+{4}{x}-{3}}}}}}\)
\(\displaystyle=\int{\frac{{{\left.{d}{x}\right.}}}{{\sqrt{{-{\left({x}^{{{2}}}-{4}{x}+{3}\right)}}}}}}\)
\(\displaystyle=\int{\frac{{{\left.{d}{x}\right.}}}{{\sqrt{{-{\left({x}^{{{2}}}-{4}{x}+{2}^{{{2}}}-{2}^{{{2}}}+{3}\right)}}}}}}\)
\(\displaystyle=\int{\frac{{{\left.{d}{x}\right.}}}{{\sqrt{{-{\left({\left({x}-{2}\right)}^{{{2}}}-{4}+{3}\right)}}}}}}\)
\(\displaystyle=\int{\frac{{{\left.{d}{x}\right.}}}{{\sqrt{{-{\left({\left({x}-{2}\right)}^{{{2}}}-{1}\right)}}}}}}\)
\(\displaystyle=\int{\frac{{{\left.{d}{x}\right.}}}{{\sqrt{{{1}-{\left({x}-{2}\right)}^{{{2}}}}}}}}\)
\(\displaystyle={{\sin}^{{-{1}}}{\left({x}-{2}\right)}}+{C}\)
0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours
...