# Find the x-and y-intercepts of the rational function f(x)=\frac{6}{x^{2}+4x-7} Question
Upper level algebra Find the x-and y-intercepts of the rational function
$$\displaystyle{f{{\left({x}\right)}}}={\frac{{{6}}}{{{x}^{{{2}}}+{4}{x}-{7}}}}$$ 2021-01-09
As x -intercept is a point on the graph where $$\displaystyle{y}={0}$$,
$$\displaystyle{\frac{{{6}}}{{{x}^{{{2}}}+{4}{x}-{7}}}}={0}$$ implies there is no solution for $$\displaystyle{x}\in{R}$$.
$$\displaystyle\therefore$$ There is no x -intercept point.
As y -intercept is a point on the graph where $$\displaystyle{x}={0}$$,
$$\displaystyle{y}={\frac{{{6}}}{{{0}^{{{2}}}+{4}{\left({0}\right)}-{7}}}}$$
$$\displaystyle{y}=-{\frac{{{6}}}{{{7}}}}$$ $$\displaystyle\therefore$$ y-intercept is $$\displaystyle{\left({0},-{\frac{{{6}}}{{{7}}}}\right)}$$

### Relevant Questions Find the x-and y-intercepts of the graph of the equation algebraically.
$$\displaystyle{y}=-{\frac{{{1}}}{{{2}}}}{x}+{\frac{{{2}}}{{{3}}}}$$ Find the x-and y-intercepts of this equation.
$$\displaystyle{f{{\left({x}\right)}}}=-{x}+{2}$$ Find the x-and y-intercepts of the graph of the equation algebraically.
$$\displaystyle{4}{x}-{5}{y}={12}$$ Find the x- and y-intercepts of the graph of the equation.
$$\displaystyle{y}={14}{x}-{6}$$ Find the x-and y-intercepts of the graph of the equation algebraically.
$$\displaystyle{y}={5}-{\left({6}-{x}\right)}$$ Find the x-and y-intercepts of the graph of the equation algebraically.
$$\displaystyle{y}=-{5}{x}+{6}$$ Find the x- and y-intercepts of the graph of the equation.
$$\displaystyle{y}={\frac{{{1}}}{{{3}}}}{x}-{5}$$ $$\displaystyle{\frac{{{8}{x}}}{{{3}}}}+{50}-{2}{y}={0}$$ $$\displaystyle{y}={\frac{{{3}}}{{{4}}}}{x}-{\frac{{{1}}}{{{4}}}}$$ $$\displaystyle{\frac{{{2}{x}}}{{{5}}}}+{8}-{3}{y}={0}$$