 # Twenty-six students in a college algebra class took a final exam on which the passing score was 70. The mean score of those who passed was 78, and the mean score of those who failed was 26. The mean of all scores was 72. How many students failed the exam? Sinead Mcgee 2020-12-15 Answered
Twenty-six students in a college algebra class took a final exam on which the passing score was 70. The mean score of those who passed was 78, and the mean score of those who failed was 26. The mean of all scores was 72.
How many students failed the exam?
You can still ask an expert for help

• Questions are typically answered in as fast as 30 minutes

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it Nicole Conner
Calculation:
We need to find how many students failed in the exam.
Suppose that x students’ failed in the exam.
Therefore (26 — x) students passed in the exam.
Again, let us consider that total score of the passing students were y, and total score of the failed students were z.
Then the mean score of those who passed was 78,
$\frac{y}{\left(26-x\right)}=78$....(i)
The mean score of those who failed was 26,
$\frac{z}{x}=26$....(ii)
The mean of all score was 72,
$\frac{y+z}{26}=72$....(iii)
From the equation (iii)
$\frac{y+z}{26}=72$
$y=z=1872$
$z=1872-y$
Putting $y=1872-26x$ in the equation (i)
$\frac{y}{\left(26-x\right)}=78$
$\frac{1872-26x}{\left(26-x\right)}=78$
$1872-26x=78\left(26-x\right)$
$1872-26x=2028-78x$
$78x-26x=2028-1872$
$52x=156$
$x=3$
Therefore, 3 students failed in the exam.