Question

A population of values has a normal distribution with \mu=73.1 and \sigma=28.1. You intend to draw a random sample of size n=131. Find the probability that a single randomly selected value is greater than 69.7. P(X > 69.7) =? Write your answers as numbers accurate to 4 decimal places.

Random variables
ANSWERED
asked 2021-02-24
A population of values has a normal distribution with \(\displaystyle\mu={73.1}\) and \(\displaystyle\sigma={28.1}\). You intend to draw a random sample of size \(\displaystyle{n}={131}\).
Find the probability that a single randomly selected value is greater than 69.7.
\(\displaystyle{P}{\left({X}{>}{69.7}\right)}=\)?
Write your answers as numbers accurate to 4 decimal places.

Answers (1)

2021-02-25
Step 1
Let us denote X= population values
Given that X follows a normal distribution with mean \(\displaystyle=\mu={73.1}\) and standard deviation \(\displaystyle=\sigma={28.1}\)
Step 2
The probability that a single randomly selected value is greater than 69.7.
\(\displaystyle{P}{\left({X}{>}{69.7}\right)}\)
\(\displaystyle={P}{\left({Z}{>}{\frac{{{69.7}-{73.1}}}{{{28.1}}}}\right)}\)
\(\displaystyle={P}{\left({Z}\succ{0.120996441281}\right)}={0.5482}\)
Answer: 0.5482
0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2020-10-26

A population of values has a normal distribution with \(\displaystyle\mu={198.8}\) and \(\displaystyle\sigma={69.2}\). You intend to draw a random sample of size \(\displaystyle{n}={147}\).
Find the probability that a single randomly selected value is between 184 and 205.1.
\(\displaystyle{P}{\left({184}{<}{X}{<}{205.1}\right)}=\)?
Write your answers as numbers accurate to 4 decimal places.

asked 2020-11-05

A population of values has a normal distribution with \(\displaystyle\mu={129.7}\) and \(\displaystyle\sigma={7.7}\). You intend to draw a random sample of size \(\displaystyle{n}={10}\).
Find the probability that a single randomly selected value is less than 130.9.
\(\displaystyle{P}{\left({X}{<}{130.9}\right)}=\)?
Write your answers as numbers accurate to 4 decimal places.

asked 2021-02-13

A population of values has a normal distribution with \(\displaystyle\mu={192.6}\) and \(\displaystyle\sigma={34.4}\). You intend to draw a random sample of size \(\displaystyle{n}={173}\).
Find the probability that a single randomly selected value is less than 186.1.
\(\displaystyle{P}{\left({X}{<}{186.1}\right)}=\)?
Write your answers as numbers accurate to 4 decimal places.

asked 2021-02-19

A population of values has a normal distribution with \(\displaystyle\mu={216.9}\) and \(\displaystyle\sigma={87.1}\). You intend to draw a random sample of size \(\displaystyle{n}={97}\).
Find the probability that a single randomly selected value is between 193 and 244.3.
\(\displaystyle{P}{\left({193}{<}{X}{<}{244.3}\right)}=\)?
Write your answers as numbers accurate to 4 decimal places.

...