The probability that a single randomly selected value is greater than 192.5 is,

\(\displaystyle{P}{\left({X}{>}{192.5}\right)}={1}-{P}{\left({X}\leq{192.5}\right)}\)

\(\displaystyle={1}-{P}{\left({\frac{{{X}-\mu}}{{\sigma}}}\leq{\frac{{{20}-{45}}}{{{12}}}}\right)}\)

\(\displaystyle={1}-{P}{\left({z}\leq-{0.57}\right)}\)

\(\displaystyle={1}-{\left(={N}{O}{R}{M}{D}{I}{S}{T}{\left(-{0.57}\right)}\right)}\) (Using the excel fromula)

\(\displaystyle={1}-{0.2843}={0.7157}\)

Therefore, the required probability is, 0.7157.