A population of values has a normal distribution with \mu=154.5 and \sigma=96.1. You intend to draw a random sample of size n=134. Find the probability that a sample of size n=134 is randomly selected with a mean greater than 167. P(M > 167) =? Write your answers as numbers accurate to 4 decimal places.

A population of values has a normal distribution with \mu=154.5 and \sigma=96.1. You intend to draw a random sample of size n=134. Find the probability that a sample of size n=134 is randomly selected with a mean greater than 167. P(M > 167) =? Write your answers as numbers accurate to 4 decimal places.

Question
Random variables
asked 2020-11-09
A population of values has a normal distribution with \(\displaystyle\mu={154.5}\) and \(\displaystyle\sigma={96.1}\). You intend to draw a random sample of size \(\displaystyle{n}={134}\).
Find the probability that a sample of size \(\displaystyle{n}={134}\) is randomly selected with a mean greater than 167.
\(\displaystyle{P}{\left({M}{>}{167}\right)}=\)?
Write your answers as numbers accurate to 4 decimal places.

Answers (1)

2020-11-10
\(\displaystyle{X}_{{{1}}},{X}_{{{2}}},\ldots{X}_{{{134}}}\) be a random sample from Normal distribution with \(\displaystyle\mu={154.5}\) and \(\displaystyle\sigma={96.1}\).
Then the sample mean
\(\displaystyle{M}={\frac{{{1}}}{{{134}}}}{\sum_{{{i}={1}}}^{{{134}}}}{X}_{{{i}}}\) follows Normal distribution with mean 154.5 and standard deviation \(\displaystyle{\frac{{{96.1}}}{{\sqrt{{{134}}}}}}\).
Hence, the probability that sample mean greater than 167.
\(\displaystyle{P}{\left({M}{>}{167}\right)}\)
\(\displaystyle={1}-{P}{\left({M}\leq{167}\right)}\)
\(\displaystyle={1}-{P}{\left({\frac{{{M}-{154.5}}}{{\frac{{96.1}}{\sqrt{{{134}}}}}}}\leq{\frac{{{167}-{154.5}}}{{\frac{{96.1}}{\sqrt{{{134}}}}}}}\right)}\)
\(\displaystyle={1}-{P}{\left({Z}\leq{1.506}\right)},{Z}={\left({\frac{{{M}-{154.5}}}{{\frac{{96.1}}{\sqrt{{{134}}}}}}}\right)}\) follows Normal (0,1)
\(\displaystyle={1}-\phi{\left({1.506}\right)},\phi{\left({1.506}\right)}\) calculated from Normal distribution table.
\(\displaystyle={1}-{0.934}={0.066}\)
Therefore, the probability that a sample of size \(\displaystyle{n}={134}\) is randomly selected with a mean greater than 167 is 0.066.
0

Relevant Questions

asked 2021-01-27
A population of values has a normal distribution with \(\displaystyle\mu={154.5}\) and \(\displaystyle\sigma={96.1}\). You intend to draw a random sample of size \(\displaystyle{n}={134}\).
Find the probability that a single randomly selected value is greater than 167.
\(\displaystyle{P}{\left({X}{>}{167}\right)}=\)?
Write your answers as numbers accurate to 4 decimal places.
asked 2020-10-25
A population of values has a normal distribution with \(\displaystyle\mu={120.6}\) and \(\displaystyle\sigma={48.5}\). You intend to draw a random sample of size \(\displaystyle{n}={105}\).
Find the probability that a sample of size \(\displaystyle{n}={105}\) is randomly selected with a mean greater than 114.9.
\(\displaystyle{P}{\left({M}{>}{114.9}\right)}=\)?
Write your answers as numbers accurate to 4 decimal places.
asked 2020-10-27
A population of values has a normal distribution with \(\displaystyle\mu={49}\) and \(\displaystyle\sigma={79.5}\). You intend to draw a random sample of size \(\displaystyle{n}={84}\).
Find the probability that a a sample of size \(\displaystyle{n}={84}\) is randomly selected with a mean greater than 72.4.
\(\displaystyle{P}{\left({M}{>}{72.4}\right)}=\)?
Write your answers as numbers accurate to 4 decimal places.
asked 2021-03-07
A population of values has a normal distribution with \(\displaystyle\mu={182.5}\) and \(\displaystyle\sigma={49.4}\). You intend to draw a random sample of size \(\displaystyle{n}={15}\).
Find the probability that a sample of size \(\displaystyle{n}={15}\) is randomly selected with a mean greater than 169.7.
\(\displaystyle{P}{\left({M}{>}{169.7}\right)}=\)?
Write your answers as numbers accurate to 4 decimal places.
asked 2020-10-25
A population of values has a normal distribution with \(\displaystyle\mu={239.5}\) and \(\displaystyle\sigma={32.7}\). You intend to draw a random sample of size \(\displaystyle{n}={139}\).
Find the probability that a sample of size n=139 is randomly selected with a mean greater than 235.9.
\(\displaystyle{P}{\left({M}{>}{235.9}\right)}=\)?
Write your answers as numbers accurate to 4 decimal places.
asked 2021-02-08
A population of values has a normal distribution with \(\displaystyle\mu={73.1}\) and \(\displaystyle\sigma={28.1}\). You intend to draw a random sample of size \(\displaystyle{n}={131}\).
Find the probability that a sample of size \(\displaystyle{n}={131}\) is randomly selected with a mean greater than 69.7.
\(\displaystyle{P}{\left({M}{>}{69.7}\right)}=\)?
Write your answers as numbers accurate to 4 decimal places.
asked 2021-02-11
A population of values has a normal distribution with \(\displaystyle\mu={116.3}\) and \(\displaystyle\sigma={27.5}\). You intend to draw a random sample of size \(\displaystyle{n}={249}\).
Find the probability that a sample of size \(\displaystyle{n}={249}\) is a randomly selected with a mean greater than 117.3.
\(\displaystyle{P}{\left(\overline{{{X}}}{>}{117.3}\right)}=\)?
Write your answers as numbers accurate to 4 decimal places.
asked 2020-12-25
A population of values has a normal distribution with \(\displaystyle\mu={13.7}\) and \(\displaystyle\sigma={22}\).
You intend to draw a random sample of size \(\displaystyle{n}={78}\).
Find the probability that a sample of size \(\displaystyle{n}={78}\) is randomly selected with a mean less than 11.5.
\(\displaystyle{P}{\left({M}{<}{11.5}\right)}=\)?
Write your answers as numbers accurate to 4 decimal places.
asked 2020-10-27
A population of values has a normal distribution with \(\displaystyle\mu={192.3}\) and \(\displaystyle\sigma={66.5}\). You intend to draw a random sample of size \(\displaystyle{n}={15}\).
Find the probability that a sample of size \(\displaystyle{n}={15}\) is randomly selected with a mean less than 185.4.
\(\displaystyle{P}{\left({M}{<}{185.4}\right)}=\)?
Write your answers as numbers accurate to 4 decimal places.
asked 2021-02-08

A population of values has a normal distribution with \(\displaystyle\mu={204.3}\) and \(\displaystyle\sigma={43}\). You intend to draw a random sample of size \(\displaystyle{n}={111}\).
Find the probability that a single randomly selected value is less than 191.2.
\(\displaystyle{P}{\left({X}{<}{191.2}\right)}=\)?
Find the probability that a sample of size \(\displaystyle{n}={111}\) is randomly selected with a mean less than 191.2.
\(\displaystyle{P}{\left({M}{<}{191.2}\right)}=\)?
Write your answers as numbers accurate to 4 decimal places.

...