Ask question

# A population of values has a normal distribution with \mu = 200 and \sigma = 31.9. You intend to draw a random sample of size n = 11. Find the probability that a sample of size n = 11 is randomly selected with a mean less than 226.9. P(M<226.9)=? Write your answers as numbers accurate to 4 decimal places. # A population of values has a normal distribution with \mu = 200 and \sigma = 31.9. You intend to draw a random sample of size n = 11. Find the probability that a sample of size n = 11 is randomly selected with a mean less than 226.9. P(M<226.9)=? Write your answers as numbers accurate to 4 decimal places.

Question
Random variables asked 2021-01-16
A population of values has a normal distribution with $$\displaystyle\mu={200}$$ and $$\displaystyle\sigma={31.9}$$. You intend to draw a random sample of size $$\displaystyle{n}={11}$$.
Find the probability that a sample of size $$\displaystyle{n}={11}$$ is randomly selected with a mean less than 226.9.
$$\displaystyle{P}{\left({M}{<}{226.9}\right)}=$$</span>?
Write your answers as numbers accurate to 4 decimal places.

## Answers (1) 2021-01-17
The probability that a sample of size $$\displaystyle{n}={11}$$ is randomly selected with a mean less than 226.9 is,
$$\displaystyle{P}{\left({M}{<}{226.9}\right)}={P}{\left({\frac{{{M}-\mu}}{{{\left({\frac{{\sigma}}{{\sqrt{{{n}}}}}}\right)}}}}{<}{\frac{{{226.9}-{200}}}{{{\left({\frac{{{31.9}}}{{\sqrt{{{11}}}}}}\right)}}}}\right)}$$</span>
$$\displaystyle={P}{\left({z}{<}{\frac{{{26.9}}}{{{9.6182}}}}\right)}$$</span>
$$\displaystyle={P}{\left({z}{<}{2.797}\right)}$$</span>
The probability of z less than 2.797 can be obtained using the excel formula “=NORM.S.DIST(2.797,TRUE)”. The probability value is 0.9974.
The required probability value is,
$$\displaystyle{P}{\left({M}{<}{226.9}\right)}={P}{\left({z}{<}{2.797}\right)}={0.9974}$$</span>
Thus, the probability that a sample of size $$\displaystyle{n}={11}$$ is randomly selected with a mean less than 226.9 is 0.9974.

### Relevant Questions asked 2020-10-28
A population of values has a normal distribution with $$\displaystyle\mu={200}$$ and $$\displaystyle\sigma={31.9}$$. You intend to draw a random sample of size $$\displaystyle{n}={11}$$.
Find the probability that a single randomly selected value is less than 226.9.
$$\displaystyle{P}{\left({X}{<}{226.9}\right)}=$$?
Write your answers as numbers accurate to 4 decimal places. asked 2020-12-25
A population of values has a normal distribution with $$\displaystyle\mu={13.7}$$ and $$\displaystyle\sigma={22}$$.
You intend to draw a random sample of size $$\displaystyle{n}={78}$$.
Find the probability that a sample of size $$\displaystyle{n}={78}$$ is randomly selected with a mean less than 11.5.
$$\displaystyle{P}{\left({M}{<}{11.5}\right)}=$$?
Write your answers as numbers accurate to 4 decimal places. asked 2020-11-08
A population of values has a normal distribution with $$\displaystyle\mu={129.7}$$ and $$\displaystyle\sigma={7.7}$$. You intend to draw a random sample of size $$\displaystyle{n}={10}$$.
Find the probability that a sample of size $$\displaystyle{n}={10}$$ is randomly selected with a mean less than 130.9.
$$\displaystyle{P}{\left({M}{<}{130.9}\right)}=$$?
Write your answers as numbers accurate to 4 decimal places. asked 2020-10-27
A population of values has a normal distribution with $$\displaystyle\mu={192.3}$$ and $$\displaystyle\sigma={66.5}$$. You intend to draw a random sample of size $$\displaystyle{n}={15}$$.
Find the probability that a sample of size $$\displaystyle{n}={15}$$ is randomly selected with a mean less than 185.4.
$$\displaystyle{P}{\left({M}{<}{185.4}\right)}=$$?
Write your answers as numbers accurate to 4 decimal places. asked 2020-10-25
A population of values has a normal distribution with $$\displaystyle\mu={120.6}$$ and $$\displaystyle\sigma={48.5}$$. You intend to draw a random sample of size $$\displaystyle{n}={105}$$.
Find the probability that a sample of size $$\displaystyle{n}={105}$$ is randomly selected with a mean greater than 114.9.
$$\displaystyle{P}{\left({M}{>}{114.9}\right)}=$$?
Write your answers as numbers accurate to 4 decimal places. asked 2020-10-25
A population of values has a normal distribution with $$\displaystyle\mu={239.5}$$ and $$\displaystyle\sigma={32.7}$$. You intend to draw a random sample of size $$\displaystyle{n}={139}$$.
Find the probability that a sample of size n=139 is randomly selected with a mean greater than 235.9.
$$\displaystyle{P}{\left({M}{>}{235.9}\right)}=$$?
Write your answers as numbers accurate to 4 decimal places. asked 2021-02-08

A population of values has a normal distribution with $$\displaystyle\mu={204.3}$$ and $$\displaystyle\sigma={43}$$. You intend to draw a random sample of size $$\displaystyle{n}={111}$$.
Find the probability that a single randomly selected value is less than 191.2.
$$\displaystyle{P}{\left({X}{<}{191.2}\right)}=$$?
Find the probability that a sample of size $$\displaystyle{n}={111}$$ is randomly selected with a mean less than 191.2.
$$\displaystyle{P}{\left({M}{<}{191.2}\right)}=$$?
Write your answers as numbers accurate to 4 decimal places. asked 2020-11-05
A population of values has a normal distribution with $$\displaystyle\mu={129.7}$$ and $$\displaystyle\sigma={7.7}$$. You intend to draw a random sample of size $$\displaystyle{n}={10}$$.
Find the probability that a single randomly selected value is less than 130.9.
$$\displaystyle{P}{\left({X}{<}{130.9}\right)}=$$?
Write your answers as numbers accurate to 4 decimal places. asked 2021-02-08
A population of values has a normal distribution with $$\displaystyle\mu={73.1}$$ and $$\displaystyle\sigma={28.1}$$. You intend to draw a random sample of size $$\displaystyle{n}={131}$$.
Find the probability that a sample of size $$\displaystyle{n}={131}$$ is randomly selected with a mean greater than 69.7.
$$\displaystyle{P}{\left({M}{>}{69.7}\right)}=$$?
Write your answers as numbers accurate to 4 decimal places. asked 2020-10-27
A population of values has a normal distribution with $$\displaystyle\mu={49}$$ and $$\displaystyle\sigma={79.5}$$. You intend to draw a random sample of size $$\displaystyle{n}={84}$$.
Find the probability that a a sample of size $$\displaystyle{n}={84}$$ is randomly selected with a mean greater than 72.4.
$$\displaystyle{P}{\left({M}{>}{72.4}\right)}=$$?
Write your answers as numbers accurate to 4 decimal places.
...