For each of the following matrices, determine a basis for each of the subspaces R(AT), N(A), R(A), and N(AT): A=begin{bmatrix}3 & 4 6 & 8 end{bmatrix}

Question
Matrices
asked 2021-01-28
For each of the following matrices, determine a basis for each of the subspaces R(AT), N(A), R(A), and N(AT):
\(A=\begin{bmatrix}3 & 4 \\6 & 8 \end{bmatrix}\)

Answers (1)

2021-01-29
Step 1
Given:
\(A=\begin{bmatrix}3 & 4 \\6 & 8 \end{bmatrix}\)
Step 2
\(A^T=\begin{bmatrix}3 & 6\\4 & 8 \end{bmatrix}\)
Apply \(R_2 \rightarrow R_2-\frac{4}{3}R_1\)
\(=\begin{bmatrix}3 & 6 \\0 & 0 \end{bmatrix}\)
whose rank is 1
\(R(A^T)=\text{Span}\left\{\begin{pmatrix}3 \\4 \end{pmatrix}\right\}\)
Now, \(N(A^T)\)
\(3x+6y=0\)
\(\Rightarrow x=-2y\)
\(\begin{pmatrix}x \\y \end{pmatrix}=\begin{pmatrix}-2y \\y \end{pmatrix}\)
\(=\begin{pmatrix}-2 \\1 \end{pmatrix} \ \ [\therefore y=1]\)
\(N(A^T)=\text{Span}\left\{\begin{pmatrix}-2 \\1 \end{pmatrix}\right\}\)
\(A=\begin{bmatrix}3 & 4\\6 & 8 \end{bmatrix}\)
Apply \(R_2 \rightarrow R_2-2R_1\)
\(\begin{bmatrix}3 & 4\\0 & 0 \end{bmatrix}\)
Whose rank is 1
\(R(A)=\text{Span}\left\{\begin{pmatrix}3 \\6 \end{pmatrix}\right\}\)
For N(A)
\(3x+4y=0\)
\(\Rightarrow x=-\frac{4}{3}y\)
Step 3
\(\begin{pmatrix}x \\y \end{pmatrix}=\begin{pmatrix}-\frac{4}{3}y \\y \end{pmatrix}\)
\(=\begin{pmatrix}-\frac{4}{3} \\ 1 \end{pmatrix} \ \ [\therefore y=1]\)
\(N(A)=\text{Span}\left\{\begin{pmatrix}-\frac{4}{3} \\ 1 \end{pmatrix}\right\}\)
0

Relevant Questions

asked 2020-12-01
For each of the following matrices, determine a basis for each of the subspaces R(AT ), N(A), R(A), and N(AT ):
\(A=\begin{bmatrix}1 & 3&1 \\2 & 4&0\end{bmatrix}\)
asked 2021-02-04
Determine whether the given matrices are inverses of each other. \(A=\begin{bmatrix} 8 & 3 &-4 \\ -6 & -2 &3\\-3&1&1 \end{bmatrix} \text{ and } B=\begin{bmatrix} -1 & -1 &-1 \\ 3 & 4 &0\\0&1&-2 \end{bmatrix}\)
asked 2021-01-22
Evaluate the determinant of each of the following matrices:
a. \(\begin{bmatrix}10 & 9 \\ 6 & 5 \end{bmatrix}\)
b. \(\begin{bmatrix}4 & 3 \\ -5 & -8 \end{bmatrix}\)
asked 2021-01-17
Refer to the following matrices.
\(A=\begin{bmatrix}2 & -3&7&-4 \\-11 & 2&6&7 \\6 & 0&2&7 \\5 & 1&5&-8 \end{bmatrix} B=\begin{bmatrix}3 & -1&2 \\0 & 1&4 \\3 & 2&1 \\-1 & 0&8 \end{bmatrix} , C=\begin{bmatrix}1& 0&3 &4&5 \end{bmatrix} , D =\begin{bmatrix}1\\ 3\\-2 \\0 \end{bmatrix}\)
Identify the row matrix. Matrix C is a row matrix.
asked 2021-02-25
Use the matrices AA and BB below instead of those in your text.
\(A=\begin{bmatrix}-6 & -1 \\ -3 & -4 \end{bmatrix} B=\begin{bmatrix} -1 & 3 \\ -5 & -8 \end{bmatrix}\) 1) 2A+B=? 2)A-4B=?
asked 2021-02-20
Compute the product AB by the definition of the product of​ matrices, where \(Ab_1 \text{ and } Ab_2\) are computed​ separately, and by the​ row-column rule for computing AB.
\(A=\begin{bmatrix}-1 & 2 \\2 & 5\\5&-3 \end{bmatrix} , B=\begin{bmatrix}4 & -1 \\-2 & 4 \end{bmatrix}\)
Determine the product AB
AB=?
asked 2020-12-16
Consider the matrices
\(A=\begin{bmatrix}1 & -1 \\0 & 1 \end{bmatrix},B=\begin{bmatrix}2 & 3 \\1 & 5 \end{bmatrix},C=\begin{bmatrix}1 & 0 \\0 & 8 \end{bmatrix},D=\begin{bmatrix}2 & 0 &-1\\1 & 4&3\\5&4&2 \end{bmatrix} \text{ and } F=\begin{bmatrix}2 & -1 &0\\0 & 1&1\\2&0&3 \end{bmatrix}\)
a) Show that A,B,C,D and F are invertible matrices.
b) Solve the following equations for the unknown matrix X.
(i) \(AX^T=BC^3\)
(ii) \(A^{-1}(X-T)^T=(B^{-1})^T\)
(iii) \(XF=F^{-1}-D^T\)
asked 2020-12-30
Let \(A=\begin{bmatrix}1 & 2 \\4 & -1 \end{bmatrix} \text{ and } B=\begin{bmatrix}a & -3 \\-6& 1 \end{bmatrix}\) . For what values of a (if any) do matrices A and B commute?
None
-2
-6
-1
-4
asked 2020-12-09
Given the matrices A and B shown below , solve for X in the equation \(-\frac{1}{3}X+\frac{1}{2}A=B\)
\(A=\begin{bmatrix}-10 & 4 \\8 & 8 \end{bmatrix}, B=\begin{bmatrix}9 & -1 \\4& 2 \end{bmatrix}\)
asked 2021-03-11
Use cramer's rule to determine the values of \(I_1, I_2, I_3\) and \(I_4\)
\(\begin{bmatrix}13.7 & -4.7 & -2.2 &0 \\ -4.7 & 15.4 & 0 &-8.2 \\-2.2 & 0 & 25.4 &-22 \\ 0 & -8.2 & -22 &31.3 \end{bmatrix}\begin{bmatrix}I_1 \\ I_2 \\ I_3 \\ I_4 \end{bmatrix}=\begin{bmatrix}6 \\ -6 \\ 5 \\-9 \end{bmatrix}\)
...