For the following statement, either prove that they are true or provide a counterexample:

Let a, b, c, d,$m\in Z$ such that c, $d\ge 1$ and m > 1. If $a\equiv b\left(\text{mod}m\right)$ and

$c\equiv d\left(\text{mod}m\right)$ , then ${a}^{c}\equiv {b}^{d}\left(\text{mod}m\right)$

Let a, b, c, d,