# Solve the linear congruence x+2y -= 1(mod 5) 2x+y -= 1(mod 5) Question
Congruence Solve the linear congruence
$$\displaystyle{x}+{2}{y}\equiv{1}{\left(\text{mod}{5}\right)}$$
$$\displaystyle{2}{x}+{y}\equiv{1}{\left(\text{mod}{5}\right)}$$ 2021-02-06
Step 1
Given a system of linear congruences
$$\displaystyle{x}+{2}{y}\equiv{1}{\left(\text{mod}{5}\right)}$$
$$\displaystyle{2}{x}+{y}\equiv{1}{\left(\text{mod}{5}\right)}$$
Solve it.
Step 2
Multiply the first congruence by 2.
$$\displaystyle{2}{x}+{4}{y}\equiv{2}{\left(\text{mod}{5}\right)}$$
Add the preceding one with the second congruence in the system.
$$\displaystyle{4}{x}+{5}{y}\equiv{3}{\left(\text{mod}{5}\right)}$$
$$\displaystyle\Rightarrow{4}{x}\equiv{3}{\left(\text{mod}{5}\right)}$$
Step 3
Multiply the congruence by $$\displaystyle{4}^{{-{1}}}{\left(\text{mod}{5}\right)}={4}$$ to get
$$\displaystyle{16}{x}\equiv{12}{\left(\text{mod}{5}\right)}$$
$$\displaystyle\Rightarrow{x}\equiv{2}{\left(\text{mod}{5}\right)}$$
Step 4
Plugging back in x for the second equation.
$$\displaystyle{4}+{y}\equiv{1}{\left(\text{mod}{5}\right)}$$
$$\displaystyle\Rightarrow{y}\equiv-{3}{\left(\text{mod}{5}\right)}{\quad\text{or}\quad}{y}\equiv{2}{\left(\text{mod}{5}\right)}$$
Thus the solution of the system of congruences is
$$\displaystyle{x}\equiv{2}{\left(\text{mod}{5}\right)},{y}\equiv{2}{\left(\text{mod}{5}\right)}$$

### Relevant Questions Solve the congruence equation:
2x=3 mod 5 Find all whole number solutions of the congruence equation.
$$\displaystyle{\left({2}{x}+{1}\right)}\equiv{5}\text{mod}{4}$$ Find all whole number solutions of the congruence equation.
$$(2x + 1)\equiv 5\ mod\ 4$$ Solve the set of congruences
$$\displaystyle{2}{x}\equiv{1}{\left(\text{mod}{5}\right)}$$
$$\displaystyle{x}\equiv{3}{\left(\text{mod}{4}\right)}$$ Solve the linear congruence
$$\displaystyle{7}{x}\equiv{13}{\left(\text{mod}{19}\right)}$$ Solve the linear congruence
$$\displaystyle{7}{x}+{3}{y}\equiv{10}{\left(\text{mod}{16}\right)}$$  Solve the following linear congruence: $$17x\ congruence\ 3(mod\ 210)$$ Solve the congruence $$\displaystyle{x}^{{20}}-{1}\equiv{0}{\left(\text{mod}{61}\right)}$$ Using Fermat's Little Theorem, solve the congruence $$\displaystyle{2}\cdot{x}^{{{425}}}+{4}\cdot{x}^{{{108}}}-{3}\cdot{x}^{{2}}+{x}-{4}\equiv{0}\text{mod}{107}$$.