Solve the system of given equations using matrices. Use Gaussian elimination with back-substitution or Gauss-Jordan elimination. begin{cases}3a-b-4c=32a-b+2c=-8a+2b-3c=9end{cases}

Solve the system of given equations using matrices. Use Gaussian elimination with back-substitution or Gauss-Jordan elimination. begin{cases}3a-b-4c=32a-b+2c=-8a+2b-3c=9end{cases}

Question
Matrices
asked 2021-01-31
Solve the system of given equations using matrices. Use Gaussian elimination with back-substitution or Gauss-Jordan elimination.
\(\begin{cases}3a-b-4c=3\\2a-b+2c=-8\\a+2b-3c=9\end{cases}\)

Answers (1)

2021-02-01
Step 1
We need to convert it into Reduced echelon form :
First write the given equation in the form of augmented matrix:
\(\begin{bmatrix}3&-1&-4&|&3 \\2&-1&2&|&-8\\1&2&-3&|&9 \end{bmatrix}\)
Let's reduce it to row echelon form:
Step 2
Divide row1 by 3:
\(\begin{bmatrix}1&-\frac{1}{3}&-\frac{4}{3}&|&1 \\2&-1&2&|&-8\\1&2&-3&|&9 \end{bmatrix}\)
Now,
\(R_2=R_2-2R_1\)
\(\begin{bmatrix}1&-\frac{1}{3}&-\frac{4}{3}&|&1 \\0&-\frac{1}{3}&\frac{14}{3}&|&-10\\1&2&-3&|&9 \end{bmatrix}\)
Step 3
Now, \(R_3=R_3-R_1\)
\(\begin{bmatrix}1&-\frac{1}{3}&-\frac{4}{3}&|&1 \\0&-\frac{1}{3}&\frac{14}{3}&|&-10\\0&\frac{7}{3}&-\frac{5}{3}&|&8 \end{bmatrix}\)
Next,
\(R_1=R_1-R_2\)
\(\begin{bmatrix}1&0&-6&|&11 \\0&-\frac{1}{3}&\frac{14}{3}&|&-10\\0&\frac{7}{3}&-\frac{5}{3}&|&8 \end{bmatrix}\)
Step 4
Next,
\(R_3=R_3+7(R_2)\)
\(\begin{bmatrix}1&0&-6&|&11 \\0&-\frac{1}{3}&\frac{14}{3}&|&-10\\0&0&31&|&-62 \end{bmatrix}\)
Next, \(R_2=-3(R_2)\)
\(\begin{bmatrix}1&0&-6&|&11 \\0&1&-14&|&-30\\0&0&31&|&-62 \end{bmatrix}\)
Step 5
Further,
\(R_3=\frac{R_3}{31}\)
\(\begin{bmatrix}1&0&-6&|&11 \\0&1&-14&|&-30\\0&0&1&|&-\frac{62}{31} \end{bmatrix}\)
Next,
\(R_1=R_1+6(R_3)\)
\(\begin{bmatrix}1&0&0&|&-1 \\0&1&0&|&-58\\0&0&1&|&-\frac{62}{31} \end{bmatrix}\)
Hence,
We have reduced this matrix into echelon form and gauss elimination,
Now,
We get the values as:
a=-1 , b=-58 , c=-2
0

Relevant Questions

asked 2021-02-08
Solve the system of given equations using matrices. Use Gaussian elimination with back-substitution or Gauss-Jordan elimination.
\(\begin{cases}x+3y=0\\x+y+z=1\\3x-y-z=11\end{cases}\)
asked 2021-01-08
Solve the system of equations using matrices.Use Gaussian elimination with back-substitution or Gauss-Jordan elimination.
\(\begin{cases}x+y-z=-2\\2x-y+z=5\\-x+2y+2z=1\end{cases}\)
asked 2021-03-15

Use back-substitution to solve the system of linear equations.
\(\begin{cases}x &-y &+5z&=26\\ &\ \ \ y &+2z &=1 \\ & &\ \ \ \ \ z & =6\end{cases}\)
(x,y,z)=()

asked 2020-11-23
Solve the system of equations using matrices. Use the Gaussian elimination method with​ back-substitution.
x+4y=0 x+5y+z=1 5x-y-z=79
asked 2021-01-02
Given the matrices
\(A=\begin{bmatrix}1& -1&2 \\3&4&5\\0&1&-1 \end{bmatrix} , B=\begin{bmatrix}0&2&1 \\3&0&5\\7&-6&0 \end{bmatrix} \text{ and } C=\begin{bmatrix}0&0&2 \\3&1&0\\0&-2&4 \end{bmatrix}\)
Determine the following
i)2A-B+2C ii)A+B+C iii)4C-2B+3A iv)\((A \times B)-C\)
asked 2021-02-22
To solve: The system of congruence \(\displaystyle{x}={2}{\left({b}\text{mod}{3}\right)},{x}={1}{\left({b}\text{mod}{4}\right)},\ {\quad\text{and}\quad}\ {x}={3}{\left({b}\text{mod}{5}\right)}\) using the method of back substitution.
asked 2021-02-02

Find the following matrices: a) \(A + B.\)
(b) \(A - B.\)
(c) -4A.
(d) \( 3A + 2B.\)
\(A=\begin{bmatrix}6 & 2 & -3 \end{bmatrix} , B=\begin{bmatrix}4 & -2 & 3 \end{bmatrix}\)

asked 2021-04-02
Solve the system of equations using the addition/elimination method.
4x+3y=15
2x-5y=1
asked 2021-01-25

Solve the system of linear equations using matrices.
\(3x-2y-4=0\)
\(2y=12-x\)

asked 2021-02-02

Solve the system of equations (Use matrices.):
\(x-2y+z = 16\),
\(2x-y-z = 14\),
\(3x+5y-4z =-10\)

...