Calculation:

The lenght of the given triangles \(\displaystyle\triangle{T}{W}{Z}\) are 10,11, and triangles \(\displaystyle\triangle{V}{W}{X}\) are 20,20. Now,

\(\displaystyle\frac{{{T}{W}}}{{{W}{V}}}=\frac{{10}}{{20}}=\frac{{1}}{{2}}{\left\lbrace{s}{i}{d}{e}{r}{a}{t}{i}{o}\right\rbrace}\)

\(\displaystyle\frac{{{Z}{W}}}{{{X}{W}}}=\frac{{11}}{{22}}=\frac{{1}}{{2}}{\left\lbrace{s}{i}{d}{e}{r}{a}{t}{i}{o}\right\rbrace}\)

\(\displaystyle\angle{T}{W}{Z}=\angle{V}{W}{X}\)

\(\displaystyle\therefore\triangle{T}{W}{Z}\sim\triangle{V}{W}{X}\) {by SAS-similarity}

Hence, the triangle is similar by SAS-similarity.

The lenght of the given triangles \(\displaystyle\triangle{T}{W}{Z}\) are 10,11, and triangles \(\displaystyle\triangle{V}{W}{X}\) are 20,20. Now,

\(\displaystyle\frac{{{T}{W}}}{{{W}{V}}}=\frac{{10}}{{20}}=\frac{{1}}{{2}}{\left\lbrace{s}{i}{d}{e}{r}{a}{t}{i}{o}\right\rbrace}\)

\(\displaystyle\frac{{{Z}{W}}}{{{X}{W}}}=\frac{{11}}{{22}}=\frac{{1}}{{2}}{\left\lbrace{s}{i}{d}{e}{r}{a}{t}{i}{o}\right\rbrace}\)

\(\displaystyle\angle{T}{W}{Z}=\angle{V}{W}{X}\)

\(\displaystyle\therefore\triangle{T}{W}{Z}\sim\triangle{V}{W}{X}\) {by SAS-similarity}

Hence, the triangle is similar by SAS-similarity.