# Use the definition of the matrix exponential to compute eA for each of the following matrices: A=begin{bmatrix}1 & 0&-1 0 & 1&00&0&1 end{bmatrix}

Use the definition of the matrix exponential to compute eA for each of the following matrices:
$A=\left[\begin{array}{ccc}1& 0& -1\\ 0& 1& 0\\ 0& 0& 1\end{array}\right]$
You can still ask an expert for help

• Questions are typically answered in as fast as 30 minutes

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

Theodore Schwartz
Step 1
Given matrix is
$A=\left[\begin{array}{ccc}1& 0& -1\\ 0& 1& 0\\ 0& 0& 1\end{array}\right]$
Step 2 Now ${A}^{2}=A\cdot A$
$=\left[\begin{array}{ccc}1& 0& -1\\ 0& 1& 0\\ 0& 0& 1\end{array}\right]\cdot \left[\begin{array}{ccc}1& 0& -1\\ 0& 1& 0\\ 0& 0& 1\end{array}\right]$
$=\left[\begin{array}{ccc}1& 0& -2\\ 0& 1& 0\\ 0& 0& 1\end{array}\right]$
${A}^{3}={A}^{2}\cdot A$

$=\left[\begin{array}{ccc}1& 0& -3\\ 0& 1& 0\\ 0& 0& 1\end{array}\right]$
$\dots$
$\text{In general}$

Step 3
Now by the definition of the matrix exponential
${e}^{A}=I+A+\frac{{A}^{2}}{2!}+\frac{{A}^{3}}{3!}+\dots$
$=\left[\begin{array}{ccc}1& 0& 1\\ 0& 1& 0\\ 0& 0& 1\end{array}\right]+\left[\begin{array}{ccc}1& 0& -1\\ 0& 1& 0\\ 0& 0& 1\end{array}\right]+\frac{1}{2!}\left[\begin{array}{ccc}1& 0& -2\\ 0& 1& 0\\ 0& 0& 1\end{array}\right]+\frac{1}{3!}\left[\begin{array}{ccc}1& 0& -3\\ 0& 1& 0\\ 0& 0& 1\end{array}\right]+\dots$
$=\left[\begin{array}{ccc}1+1+\frac{1}{2!}+\frac{1}{3!}+\dots & 0& 0-\left(1+1+\frac{1}{2!}+\frac{1}{2!}+\dots \right)\\ 0& 1+1+\frac{1}{2!}+\frac{1}{2!}+\dots & 0\\ 0& 0& 1+1+\frac{1}{2!}+\frac{1}{2!}+\dots \end{array}\right]$
$=\left[\begin{array}{ccc}e& 0& -e\\ 0& e& 0\\ 0& 0& e\end{array}\right]$
Step 4
${e}^{A}=\left[\begin{array}{ccc}e& 0& -e\\ 0& e& 0\\ 0& 0& e\end{array}\right]$
Jeffrey Jordon