Find an LU factorization of the matrix A (with L unit lower triangular). A=[(-4,0,4),(12,2,-9),(12,8,9)] L-? U-?

Find an LU factorization of the matrix A (with L unit lower triangular). A=[(-4,0,4),(12,2,-9),(12,8,9)] L-? U-?

Question
Polynomial factorization
asked 2020-12-12
Find an LU factorization of the matrix A (with L unit lower triangular).
\(\displaystyle{A}={\left[\begin{array}{ccc} -{4}&{0}&{4}\\{12}&{2}&-{9}\\{12}&{8}&{9}\end{array}\right]}\)
L-?
U-?

Answers (1)

2020-12-13
Step 1
The given matrix is \(\displaystyle{A}={\left[\begin{array}{ccc} -{4}&{0}&{4}\\{12}&{2}&-{9}\\{12}&{8}&{9}\end{array}\right]}\).
Using Gaussian Elimination method,
\(\displaystyle{A}={\left[\begin{array}{ccc} -{4}&{0}&{4}\\{0}&{2}&{3}\\{12}&{8}&{9}\end{array}\right]}{R}_{{2}}\rightarrow{R}_{{2}}+{3}{R}_{{1}}\)
\(\displaystyle={\left[\begin{array}{ccc} -{4}&{0}&{4}\\{0}&{2}&{3}\\{0}&{8}&{21}\end{array}\right]}{R}_{{3}}\rightarrow{R}_{{3}}+{3}{R}_{{1}}\)
\(\displaystyle={\left[\begin{array}{ccc} -{4}&{0}&{4}\\{0}&{2}&{3}\\{0}&{0}&{9}\end{array}\right]}{R}_{{3}}\rightarrow{R}_{{3}}-{4}{R}_{{2}}\)
Step 2
Since, \(\displaystyle{U}={\left[\begin{array}{ccc} -{4}&{0}&{4}\\{0}&{2}&{3}\\{0}&{0}&{9}\end{array}\right]}\).
L is just up of the multipliers we used in Gaussian elimination with ls on the diagonal.
Since, \(\displaystyle{L}={\left[\begin{array}{ccc} {1}&{0}&{0}\\-{3}&{1}&{0}\\-{3}&{4}&{1}\end{array}\right]}\).
Hence Lu decomposition for A is
\(\displaystyle{A}={\left[\begin{array}{ccc} -{4}&{0}&{4}\\{12}&{2}&-{9}\\{12}&{8}&{9}\end{array}\right]}={\left[\begin{array}{ccc} {1}&{0}&{0}\\-{3}&{1}&{0}\\-{3}&{4}&{1}\end{array}\right]}{\left[\begin{array}{ccc} -{4}&{0}&{4}\\{0}&{2}&{3}\\{0}&{0}&{9}\end{array}\right]}={L}{U}\).
0

Relevant Questions

asked 2021-02-10
Find an LU factorization of the matrix A (with L unit lower triangular).
\(\displaystyle{A}={\left[\begin{array}{cc} {5}&{4}\\-{4}&-{3}\end{array}\right]}\)
L-?
U-?
asked 2021-05-01
Find an LU factorization of \(A=\begin{bmatrix}h & -4 & -2 & 10 \\h & -9 & 4 & 2 \\ 0 & 0 & -4 & 2\\0 & 1 & 4 & 4 \\ 0 & 0 & 0 & \frac{h}{2} \end{bmatrix}\). h=102
asked 2021-05-09
Find the LU-Factorization of the matrix A below
\(A=\begin{bmatrix}2 & 1 & -1 \\-2 & 0 & 3 & \\ 2 & 1 & -4\\4 & 1 & -4 \\ 6 & 5 & -2\end{bmatrix}\)
asked 2021-06-06
Using givens rotation during QU factorization of the matrix A below, Make element (3,1) in A zero.
\([A]=\begin{bmatrix}3 & 4 & 5 \\1 & 7 & 8 \\ 2 & 6 & 9\end{bmatrix}\)
asked 2021-05-19
Solve the system Ax = b using the given LU factorization of A
\(A=\begin{bmatrix}2 & -4 & 0 \\3 & -1 & 4 \\ -1 & 2 & 2\end{bmatrix}=\begin{bmatrix}1 & 0 & 0 \\\frac{3}{2} & 1 & 0 \\ -\frac{1}{2} & 0 & 1\end{bmatrix}\times \begin{bmatrix}2 & -4 & 0 \\0 & 5 & 4 \\ 0 & 0 & 2\end{bmatrix}, b=\begin{bmatrix}2 \\0 \\-5\end{bmatrix}\)
asked 2021-05-04
Solve the system Ax = b using the given LU factorization of A
\(A=\begin{bmatrix}-2 & 1 \\2 & 5 \end{bmatrix}=\begin{bmatrix}1 & 0 \\-1 & 1 \end{bmatrix}\begin{bmatrix}-2 & 1 \\0 & 6 \end{bmatrix}, b=\begin{bmatrix}5 \\1 \end{bmatrix}\)
asked 2021-05-30
If A is an orthogonal matrix, find a QR factorization of A
asked 2021-03-22
The value of the operation \(\displaystyle{\left[{11}\right]}^{{{9}}}\) in \(\displaystyle{Z}_{{{12}}}\) and to write the answer in the form [r] with \(\displaystyle{0}\leq{r}{<}{m}\).
asked 2021-05-31
Compute the LU factorization of each of the following matrices.
\(\begin{bmatrix}-2 & 1 & 2 \\4 & 1 & -2 \\-6 & -3 & 4\end{bmatrix}\)
asked 2021-04-25
The unstable nucleus uranium-236 can be regarded as auniformly charged sphere of charge Q=+92e and radius \(\displaystyle{R}={7.4}\times{10}^{{-{15}}}\) m. In nuclear fission, this can divide into twosmaller nuclei, each of 1/2 the charge and 1/2 the voume of theoriginal uranium-236 nucleus. This is one of the reactionsthat occurred n the nuclear weapon that exploded over Hiroshima, Japan in August 1945.
A. Find the radii of the two "daughter" nuclei of charge+46e.
B. In a simple model for the fission process, immediatelyafter the uranium-236 nucleus has undergone fission the "daughter"nuclei are at rest and just touching. Calculate the kineticenergy that each of the "daughter" nuclei will have when they arevery far apart.
C. In this model the sum of the kinetic energies of the two"daughter" nuclei is the energy released by the fission of oneuranium-236 nucleus. Calculate the energy released by thefission of 10.0 kg of uranium-236. The atomic mass ofuranium-236 is 236 u, where 1 u = 1 atomic mass unit \(\displaystyle={1.66}\times{10}^{{-{27}}}\) kg. Express your answer both in joules and in kilotonsof TNT (1 kiloton of TNT releases 4.18 x 10^12 J when itexplodes).
...