# Write the prime factorization of the number. 5064 Question
Polynomial factorization Write the prime factorization of the number.
5064 2021-02-23
Step 1
Here, the number is 5064
Step 2
Determine the factors of the number.
$$\displaystyle{5064}={2}\times{2}\times{2}\times{3}\times{211}$$
Step 3
The promise factorization will be,
$$\displaystyle{5064}={2}^{{3}}{x}{3}^{{1}}{x}{211}$$

### Relevant Questions Find the prime factorization of 76 Find the prime factorization of 27. Find the prime factorization of 56. Use the prime factorizations $$\displaystyle{a}={2}^{{4}}\times{3}^{{4}}\times{5}^{{2}}\times{7}^{{3}}{\quad\text{and}\quad}{b}={2}^{{2}}\times{3}\times{5}^{{3}}\times{11}$$ to find the prime factorization of the following.
(a) LCM(a, b)
(b) GCF(a, b) Factor each polynomial. If a polynomial cannot be factored, write prime. Factor out the greatest common factor as necessary.
$$\displaystyle{3}{y}^{{3}}+{24}{y}^{{2}}+{9}{y}$$ Write the final factorization for each problem.
$$\displaystyle{12}{a}^{{3}}+{20}{a}^{{2}}{b}-{9}{a}{b}^{{2}}-{15}{b}^{{3}}$$ Find the LU-Factorization of the matrix A below
$$\displaystyle{A}={\left[\begin{array}{ccc} {2}&{1}&-{1}\\-{2}&{0}&{3}\\{2}&{1}&-{4}\\{4}&{1}&-{4}\\{6}&{5}&-{2}\end{array}\right]}$$ Find an LU factorization of the matrix A (with L unit lower triangular).
$$\displaystyle{A}={\left[\begin{array}{ccc} -{4}&{0}&{4}\\{12}&{2}&-{9}\\{12}&{8}&{9}\end{array}\right]}$$
L-?
U-? $$\displaystyle{A}={\left[\begin{array}{cc} {5}&{4}\\-{4}&-{3}\end{array}\right]}$$ Use the factorization theorem to determine whether $$\displaystyle{x}−\frac{{1}}{{2}}$$ is a factor
of $$\displaystyle{f{{\left({x}\right)}}}={2}{x}^{{4}}−{x}^{{3}}+{2}{x}−{1}$$.