Step 1

Given

\(\displaystyle{a}={2}^{{4}}\times{3}^{{4}}\times{5}^{{2}}\times{7}^{{3}}\)

\(\displaystyle{b}={2}^{{2}}\times{3}\times{5}^{{3}}\times{11}\)

Step 2

LCM(a,b)= Product of the greatest power of each prime factor involved in the numbers

\(\displaystyle{L}{C}{M}{\left({a},{b}\right)}={2}^{{4}}\times{3}^{{4}}\times{5}^{{3}}\times{7}^{{3}}\times{11}\)

GCF(a,b)= Product of the smallest power of each common prime factor in the numbers

\(\displaystyle{G}{C}{F}{\left({a},{b}\right)}={2}^{{2}}\times{3}\times{5}^{{2}}\)

Given

\(\displaystyle{a}={2}^{{4}}\times{3}^{{4}}\times{5}^{{2}}\times{7}^{{3}}\)

\(\displaystyle{b}={2}^{{2}}\times{3}\times{5}^{{3}}\times{11}\)

Step 2

LCM(a,b)= Product of the greatest power of each prime factor involved in the numbers

\(\displaystyle{L}{C}{M}{\left({a},{b}\right)}={2}^{{4}}\times{3}^{{4}}\times{5}^{{3}}\times{7}^{{3}}\times{11}\)

GCF(a,b)= Product of the smallest power of each common prime factor in the numbers

\(\displaystyle{G}{C}{F}{\left({a},{b}\right)}={2}^{{2}}\times{3}\times{5}^{{2}}\)