Step 1 : Analysis

Given :

a. \(\displaystyle{\left|{{7}}\right|}\)

b. \(\displaystyle{\left|{-{7}}\right|}\)

c. \(\displaystyle-{\left|{{7}}\right|}\)

d. \(\displaystyle-{\left|{-{7}}\right|}\)

Step 2 : Simplification

a. \(\displaystyle{\left|{{7}}\right|}\)

We know that the absolute value of any number is always positive,

\(\displaystyle{\left|{{7}}\right|}={7}\)

b. \(\displaystyle{\left|{-{7}}\right|}\)

We know that the absolute value of any number is always positive,

\(\displaystyle{\left|{-{7}}\right|}={7}\)

Step 3 : Solution

c. \(\displaystyle-{\left|{{7}}\right|}\)

We know that the absolute value of any number is always positive,

\(\displaystyle-{\left|{{7}}\right|}=-{7}\)

d. \(\displaystyle-{\left|{-{7}}\right|}\)

We know that the absolute value of any number is always positive,

\(\displaystyle-{\left|{-{7}}\right|}=-{7}\)

Given :

a. \(\displaystyle{\left|{{7}}\right|}\)

b. \(\displaystyle{\left|{-{7}}\right|}\)

c. \(\displaystyle-{\left|{{7}}\right|}\)

d. \(\displaystyle-{\left|{-{7}}\right|}\)

Step 2 : Simplification

a. \(\displaystyle{\left|{{7}}\right|}\)

We know that the absolute value of any number is always positive,

\(\displaystyle{\left|{{7}}\right|}={7}\)

b. \(\displaystyle{\left|{-{7}}\right|}\)

We know that the absolute value of any number is always positive,

\(\displaystyle{\left|{-{7}}\right|}={7}\)

Step 3 : Solution

c. \(\displaystyle-{\left|{{7}}\right|}\)

We know that the absolute value of any number is always positive,

\(\displaystyle-{\left|{{7}}\right|}=-{7}\)

d. \(\displaystyle-{\left|{-{7}}\right|}\)

We know that the absolute value of any number is always positive,

\(\displaystyle-{\left|{-{7}}\right|}=-{7}\)