Example to be used- A paid parking lot based on length of time stayed, up to half an hour cost $1, over half an hour up to an hour cost $2.50 and over an hour and up to 15 hours cost $20.
Step 1
One practical application in which ''Piecewise functions'' are used either explicitly or implicitly.
Step 2
1. A cell phone company uses the function below to determine the cost, C, in dollars for g gigabytes of data transfer.
Find the cost of using 1.5 gigabytes of data and the cost of using 4 gigabytes of data.
Solution:
To find the cost of using 1.5 gigabytes of data, we first look to see which part of the domain our input falls in. Because 1.5 is less than 2, we use the first formula.
To find the cost of using 4 gigabytes of data, , we see that our input of 4 is greater than 2, so we use the second formula.
C(4)=25+10(4-2)=$45
Step 3
Example to be used-
A paid parking lot based on length of time stayed, up to half an hour cost $1, over half an hour up to an hour cost $2.50 and over an hour and up to 15 hours cost $20.
Solution:
Let the number of hours be x then the piecewise function,
For each of the piecewise-defined functions in determine whether or not the function is one-to-one, and if it is, determine its inverse function.