Explain why t distributions tend to be flatter and more spread out than the normal distribution.

Explain why t distributions tend to be flatter and more spread out than the normal distribution.

Question
Normal distributions
asked 2021-02-25
Explain why t distributions tend to be flatter and more spread out than the normal distribution.

Answers (1)

2021-02-26
Step 1
The shape of a t distribution changes with degrees of freedom (df). As the degrees of freedom increases the shape of the t distribution will begin to look similar to that of a normal distribution.
Step 2
However, the t distribution has more variability than a normal distribution, especially when the degrees of freedom are small. When this is the case the t distribution will be flatter and more spread out than the normal distributions.
0

Relevant Questions

asked 2021-05-05

A random sample of \( n_1 = 14 \) winter days in Denver gave a sample mean pollution index \( x_1 = 43 \).
Previous studies show that \( \sigma_1 = 19 \).
For Englewood (a suburb of Denver), a random sample of \( n_2 = 12 \) winter days gave a sample mean pollution index of \( x_2 = 37 \).
Previous studies show that \( \sigma_2 = 13 \).
Assume the pollution index is normally distributed in both Englewood and Denver.
(a) State the null and alternate hypotheses.
\( H_0:\mu_1=\mu_2.\mu_1>\mu_2 \)
\( H_0:\mu_1<\mu_2.\mu_1=\mu_2 \)
\( H_0:\mu_1=\mu_2.\mu_1<\mu_2 \)
\( H_0:\mu_1=\mu_2.\mu_1\neq\mu_2 \)
(b) What sampling distribution will you use? What assumptions are you making? NKS The Student's t. We assume that both population distributions are approximately normal with known standard deviations.
The standard normal. We assume that both population distributions are approximately normal with unknown standard deviations.
The standard normal. We assume that both population distributions are approximately normal with known standard deviations.
The Student's t. We assume that both population distributions are approximately normal with unknown standard deviations.
(c) What is the value of the sample test statistic? Compute the corresponding z or t value as appropriate.
(Test the difference \( \mu_1 - \mu_2 \). Round your answer to two decimal places.) NKS (d) Find (or estimate) the P-value. (Round your answer to four decimal places.)
(e) Based on your answers in parts (i)−(iii), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level \alpha?
At the \( \alpha = 0.01 \) level, we fail to reject the null hypothesis and conclude the data are not statistically significant.
At the \( \alpha = 0.01 \) level, we reject the null hypothesis and conclude the data are statistically significant.
At the \( \alpha = 0.01 \) level, we fail to reject the null hypothesis and conclude the data are statistically significant.
At the \( \alpha = 0.01 \) level, we reject the null hypothesis and conclude the data are not statistically significant.
(f) Interpret your conclusion in the context of the application.
Reject the null hypothesis, there is insufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Reject the null hypothesis, there is sufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Fail to reject the null hypothesis, there is insufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Fail to reject the null hypothesis, there is sufficient evidence that there is a difference in mean pollution index for Englewood and Denver. (g) Find a 99% confidence interval for
\( \mu_1 - \mu_2 \).
(Round your answers to two decimal places.)
lower limit
upper limit
(h) Explain the meaning of the confidence interval in the context of the problem.
Because the interval contains only positive numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is greater than that of Denver.
Because the interval contains both positive and negative numbers, this indicates that at the 99% confidence level, we can not say that the mean population pollution index for Englewood is different than that of Denver.
Because the interval contains both positive and negative numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is greater than that of Denver.
Because the interval contains only negative numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is less than that of Denver.
asked 2020-12-15
Decide which of the following statements are true.
-Normal distributions are bell-shaped, but they do not have to be symmetric.
-The line of symmetry for all normal distributions is x = 0.
-On any normal distribution curve, you can find data values more than 5 standard deviations above the mean.
-The x-axis is a horizontal asymptote for all normal distributions.
asked 2021-02-26
Consider two normal distributions, one with mean-4 and standard deviation 3, and the other with mean 6 and standard deviation 3. Answer true or false to each statement and explain your answers.
a. The two normal distributions have the same spread.
b. The two normal distributions are centered at the same place.
asked 2020-11-01
Answer true or false to each statement. Explain your answers.
a. Two normal distributions that have the same mean are centered at the same place, regardless of the relationship between their standard deviations.
b. Two normal distributions that have the same standard deviation have the same spread, regardless of the relationship between their means.
asked 2021-02-28
A nylon thread is to be subjected to a 2.5-lb tensile load. Knowing that \(\displaystyle{E}={0.5}\times{10}^{{6}}\) psi, that the maximum allowable normal stress is 6ksi, and that the length of the thread must notincrease by more than 1%, determine the required diamter of thethread.
asked 2021-01-28
Select all that apply. We show that our sample statistics have (at minimum) a somewhat normal distribution because
this allows us to use t and z critical values.
this allows us to use t and z tables for probabilities.
this tells us that our sampling is appropriate.
normal distributions are cool and that's all we talk about in this class.
asked 2021-02-16
Basic Computation: hat p Distribution Suppose we have a binomial experiment in which success is defined to be a particular quality or attribute that interests us.
(b) Suppose \(n= 20\) and \(p=0.23\). Can we safely approximate the \hat{p} distribution by a normal distribution? Why or why not?
asked 2020-10-21
Distribution Suppose we have a binomial experiment in which success is defined to be a particular quality or attribute that interests us.
(a) Suppose \(n = 100\) and \(p= 0.23\). Can we safely approximate the \hat{p} distribution by a normal distribution? Why?
Compute \(\mu_{hat{p}}\) and \(\sigma_{hat{p}}\).
asked 2020-11-05
Basic Computation:\(\hat{p}\) Distribution Suppose we have a binomial experiment in which success is defined to be a particular quality or attribute that interests us.
(c) Suppose \(n = 48\) and \(p= 0.15\). Can we approximate the \(\hat{p}\) distribution by a normal distribution? Why? What are the values of \(\mu_{hat{p}}\) and \(\sigma_{p}\).?
asked 2021-02-25
Basic Computation:\(\hat{p}\) Distribution Suppose we have a binomial experiment in which success is defined to be a particular quality or attribute that interests us.
(b) Suppose \(n= 25\) and \(p= 0.15\). Can we safely approximate the \(\hat{p}\) distribution by a normal distribution? Why or why not?
...