Use Green's Theorem to evaluate the line integral. Orient the curve counerclockwise. oint_C F8dr, where F(x,y)=<> and C consists of the arcs y = x^2 and y = 8x for 0 <= x <= 8

Question
Use Green's Theorem to evaluate the line integral. Orient the curve counerclockwise.
\(\displaystyle\oint_{{C}}{F}{8}{d}{r}\), where \(\displaystyle{F}{\left({x},{y}\right)}={\left\langle{x}^{{2}},{x}^{{2}}\right\rangle}\) and C consists of the arcs \(\displaystyle{y}={x}^{{2}}{\quad\text{and}\quad}{y}={8}{x}{f}{\quad\text{or}\quad}{0}\le{x}\le{8}\)

Answers (1)

2020-10-21
Step 1
We have given the line integral with values,
\(\displaystyle{f{{\left({x},{y}\right)}}}={\left\langle{x}^{{2}},{x}^{{2}}\right\rangle}{\quad\text{and}\quad}{a}{r}{c}{s}{y}={x}^{{2}},{y}={8}{x}\)
Step 2
We know the green's theorem formula to calculate line integral,
\(\displaystyle\int_{{C}}{P}{\left.{d}{x}\right.}+{Q}{\left.{d}{y}\right.}=\int\int_{{D}}\frac{{\partial{Q}}}{{\partial{x}}}-\frac{{\partial{P}}}{{\partial{y}}}{\left.{d}{x}\right.}{\left.{d}{y}\right.}\)
Now we shall plug all the values in the formula,
\(\displaystyle\int\int_{{D}}\frac{{\partial{Q}}}{{\partial{x}}}-\frac{{\partial{P}}}{{\partial{y}}}{\left.{d}{x}\right.}{\left.{d}{y}\right.}={\int_{{0}}^{{8}}}{\int_{{{x}^{{2}}}}^{{{8}{x}}}}{\left({2}{x}-{0}\right)}{\left.{d}{y}\right.}{\left.{d}{x}\right.}\)
\(\displaystyle\int\int_{{D}}\frac{{\partial{Q}}}{{\partial{x}}}-\frac{{\partial{P}}}{{\partial{y}}}{\left.{d}{x}\right.}{\left.{d}{y}\right.}={\int_{{0}}^{{8}}}{\int_{{{x}^{{2}}}}^{{{8}{x}}}}{2}{x}{\left.{d}{y}\right.}{\left.{d}{x}\right.}\)
\(\displaystyle\int\int_{{D}}\frac{{\partial{Q}}}{{\partial{x}}}-\frac{{\partial{P}}}{{\partial{y}}}{\left.{d}{x}\right.}{\left.{d}{y}\right.}={\int_{{0}}^{{8}}}{2}{x}{{\left[{y}\right]}_{{{x}^{{2}}}}^{{{8}{x}}}}{\left.{d}{x}\right.}\)
\(\displaystyle\int\int_{{D}}\frac{{\partial{Q}}}{{\partial{x}}}-\frac{{\partial{P}}}{{\partial{y}}}{\left.{d}{x}\right.}{\left.{d}{y}\right.}={\int_{{0}}^{{8}}}{2}{x}{\left[{8}{x}-{x}^{{2}}\right]}{\left.{d}{x}\right.}\)
\(\displaystyle\int\int_{{D}}\frac{{\partial{Q}}}{{\partial{x}}}-\frac{{\partial{P}}}{{\partial{y}}}{\left.{d}{x}\right.}{\left.{d}{y}\right.}={\int_{{0}}^{{8}}}{{\left[{16}{x}^{{2}}-{2}{x}^{{3}}\right]}_{{0}}^{{8}}}\)
\(\displaystyle\int\int_{{D}}\frac{{\partial{Q}}}{{\partial{x}}}-\frac{{\partial{P}}}{{\partial{y}}}{\left.{d}{x}\right.}{\left.{d}{y}\right.}={{\left[{16}\frac{{x}^{{3}}}{{3}}-\frac{{{2}{x}^{{4}}}}{{4}}\right]}_{{0}}^{{8}}}\)
\(\displaystyle\int\int_{{D}}\frac{{\partial{Q}}}{{\partial{x}}}-\frac{{\partial{P}}}{{\partial{y}}}{\left.{d}{x}\right.}{\left.{d}{y}\right.}={\left[{16}\frac{{8}^{{3}}}{{3}}-\frac{{8}^{{4}}}{{2}}\right]}\)
\(\displaystyle\int\int_{{D}}\frac{{\partial{Q}}}{{\partial{x}}}-\frac{{\partial{P}}}{{\partial{y}}}{\left.{d}{x}\right.}{\left.{d}{y}\right.}={\left[{16}\frac{{512}}{{3}}-\frac{{4096}}{{2}}\right]}\)
\(\displaystyle\int\int_{{D}}\frac{{\partial{Q}}}{{\partial{x}}}-\frac{{\partial{P}}}{{\partial{y}}}{\left.{d}{x}\right.}{\left.{d}{y}\right.}={\left[{2730.66}-{2048}\right]}\)
\(\displaystyle\int\int_{{D}}\frac{{\partial{Q}}}{{\partial{x}}}-\frac{{\partial{P}}}{{\partial{y}}}{\left.{d}{x}\right.}{\left.{d}{y}\right.}={682.66}\)
Step 3
So the value of line integral is 682.66
0

Relevant Questions

asked 2021-01-13
Use Green's Theorem to evaluate F * dr. (Check the orientation of the curve before applying the theorem.)
\(\displaystyle{F}{\left({x},{y}\right)}=\sqrt{{x}}+{4}{y}^{{3}},{4}{x}^{{2}}+\sqrt{{{y}}}\)
C consists of the arc of the curve \(\displaystyle{y}={\sin{{\left({x}\right)}}}\) from (0, 0) to \(\displaystyle{\left(\pi,{0}\right)}\) and the line segment from \(\displaystyle{\left(\pi,{0}\right)}\) to (0, 0)
asked 2021-03-12
Use Green's Theorem to evaluate the line integral
\(\displaystyle\int_{{C}}{\left({y}+{e}^{{x}}\right)}{\left.{d}{x}\right.}+{\left({6}{x}+{\cos{{y}}}\right)}{\left.{d}{y}\right.}\)
where C is triangle with vertices (0,0),(0,2)and(2,2) oriented counterclockwise.
a)6
b)10
c)14
d)4
e)8
f)12
asked 2020-10-28
Use Stokes' theorem to evaluate the line integral \(\displaystyle\oint_{{C}}{F}\cdot{d}{r}\) where A = -yi + xj and C is the boundary of the ellipse \(\displaystyle\frac{{x}^{{2}}}{{a}^{{2}}}+\frac{{y}^{{2}}}{{b}^{{2}}}={1},{z}={0}\).
asked 2020-12-02
Evaluate the line integral \(\displaystyle\oint_{{C}}{x}{y}{\left.{d}{x}\right.}+{x}^{{2}}{\left.{d}{y}\right.}\), where C is the path going counterclockwise around the boundary of the rectangle with corners (0,0),(2,0),(2,3), and (0,3). You can evaluate directly or use Green's theorem.
Write the integral(s), but do not evaluate.
asked 2021-03-04
Use Green's Theorem in the form of this equation to prove Green's first identity, where D and C satisfy the hypothesis of Green's Theorem and the appropriate partial derivatives of f and g exist and are continuous. (The quantity grad g · n = Dng occurs in the line integral. This is the directional derivative in the direction of the normal vector n and is called the normal derivative of g.)
\(\displaystyle\oint_{{c}}{F}\cdot{n}{d}{s}=\int\int_{{D}}\div{F}{\left({x},{y}\right)}{d}{A}\)
asked 2021-01-05
Use Green’s Theorem to evaluate around the boundary curve C of the region R, where R is the triangle formed by the point (0, 0), (1, 1) and (1, 3).
Find the work done by the force field F(x,y)=4yi+2xj in moving a particle along a circle \(\displaystyle{x}^{{2}}+{y}^{{2}}={1}\) from(0,1)to(1,0).
asked 2020-12-03
Use Green's Theorem to evaluate the line integral along the given positively oriented curve.
\(\displaystyle\int_{{C}}{x}{y}^{{2}}{\left.{d}{x}\right.}+{4}{x}^{{2}}{y}{\left.{d}{y}\right.}\)
C is the triangle with vertices (0, 0), (3, 3), and (3, 6)
asked 2020-11-02
Suppose that the plane region D, its boundary curve C, and the functions P and Q satisfy the hypothesis of Green's Theorem. Considering the vector field F = Pi+Qj, prove the vector form of Green's Theorem \(\displaystyle\oint_{{C}}{F}\cdot{n}{d}{s}=\int\int_{{D}}\div{F}{\left({x},{y}\right)}{d}{A}\)
where n(t) is the outward unit normal vector to C.
asked 2021-01-15
Evaluate the line integral by the two following methods. y) dx + (x+y)dy C os counerclockwise around the circle with center the origin and radius 3(a) directly (b) using Green's Theorem.
asked 2021-02-21
Use Green's Theorem to evaluate
\(\displaystyle\oint_{{C}}{\left({x}^{{2}}+{y}\right)}{\left.{d}{x}\right.}-{\left({3}{x}+{y}^{{3}}\right)}{\left.{d}{y}\right.}\)
Where c is the ellipse \(\displaystyle{x}^{{2}}+{4}{y}^{{2}}={4}\)
...