# Assume that T is a linear transformation. Find the standard

Assume that T is a linear transformation. Find the standard matrix of T. $$\displaystyle{T}:{R}^{{{2}}}\rightarrow{R}^{{{4}}},{T}{\left({e}_{{1}}\right)}={\left({3},{1},{3},{1}\right)}$$ and $$\displaystyle{T}{\left({e}_{{2}}\right)}={\left(-{5},{2},{0},{0}\right)}$$, where $$\displaystyle{e}_{{1}}={\left({1},{0}\right)}$$ and $$\displaystyle{e}_{{2}}={90},{1}{)}$$

• Questions are typically answered in as fast as 30 minutes

### Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

SlabydouluS62
We know, that
$e_1=\begin{bmatrix}1 \\0 \end{bmatrix}$
$e_2=\begin{bmatrix}0 \\1 \end{bmatrix}$
$T(e_1)=\begin{bmatrix}3 \\1 \\3 \\1 \end{bmatrix}$
$T(e_2)=\begin{bmatrix}-5 \\2 \\0 \\0 \end{bmatrix}$
There exists a unique matrix A for the linear transformation T for which it holds $$\displaystyle{T}{\left({u}\right)}={A}{u}$$ for all u and A is a form $$\displaystyle{A}={\left[{T}{\left({e}_{{1}}\right)},\ldots,{T}{\left({e}_{{n}}\right)}\right]}$$, where $$\displaystyle{e}_{{i}},{i}={1},{2},\ldots$$ are vectors from the identity matrix, respectively to columns.
Matrix A is the standart matrix for the linear transformation T.
So, the standart form is:
$A=[T(e_1) T(e_2)]=\begin{bmatrix}3 & -5 \\1 & 2 \\3 & 0 \\1 & 0 \end{bmatrix}$
$A=\begin{bmatrix}3 & -5 \\1 & 2 \\3 & 0 \\1 & 0 \end{bmatrix}$