 Differentiation of multivariable function proof \frac{d}{dx} \int_{v(x)}^{u(x)} f(t,x)dt=u'(x)f(u(x),x)-v'(x)f(v(x),x)+\int_{v(x)}^{u(x)}\frac{\partial }{\partial x} f(t,x)dt Walter Clyburn 2022-01-05 Answered
Differentiation of multivariable function proof
$$\displaystyle{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\int_{{{v}{\left({x}\right)}}}^{{{u}{\left({x}\right)}}}}{f{{\left({t},{x}\right)}}}{\left.{d}{t}\right.}={u}'{\left({x}\right)}{f{{\left({u}{\left({x}\right)},{x}\right)}}}-{v}'{\left({x}\right)}{f{{\left({v}{\left({x}\right)},{x}\right)}}}+{\int_{{{v}{\left({x}\right)}}}^{{{u}{\left({x}\right)}}}}{\frac{{\partial}}{{\partial{x}}}}{f{{\left({t},{x}\right)}}}{\left.{d}{t}\right.}$$

• Questions are typically answered in as fast as 30 minutes

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it Melinda McCombs
$$\displaystyle{I}{\left({x}\right)}={\int_{{v}}^{{u}}}{f{{\left({t},{x}\right)}}}{\left.{d}{t}\right.}={F}{\left({u},{x}\right)}-{F}{\left({v},{x}\right)}$$
Where F is the antiderivative of f
$$\displaystyle{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{I}={\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{F}{\left({u},{x}\right)}-{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{F}{\left({v},{x}\right)}$$
Now for a function $$\displaystyle{w}{\left({a}{\left({x}\right)},{b}{\left({x}\right)}\right)}$$ its derivative with respect to x can be written as
$$\displaystyle{\frac{{\partial{a}}}{{\partial{x}}}}{\left({x}\right)}{\frac{{\partial{w}}}{{\partial{x}}}}{\left({a},{\left({x}\right)},{b}{\left({x}\right)}\right)}+{\frac{{\partial{b}}}{{\partial{x}}}}{\left({x}\right)}{\frac{{\partial{w}}}{{\partial{x}}}}{\left({a},{\left({x}\right)},{b}{\left({x}\right)}\right)}$$
In terms of F we have $$\displaystyle{F}{\left({u},{x}\right)}$$ and $$\displaystyle{F}{\left({v},{x}\right)}$$ which remember u and v are functions of x. Therefore for each of them we can write this by plugging into the above formula. $$\displaystyle{w}{\left({x}\right)}={F}{\left({x}\right)},{a}{\left({x}\right)}={v}{\left({x}\right)}$$ or $$\displaystyle{u}{\left({x}\right)}$$ and $$\displaystyle{b}{\left({x}\right)}={x}$$.
because $$\displaystyle{\frac{{\partial{x}}}{{\partial{x}}}}={1}$$ Now the above also holds for $$\displaystyle{F}{\left({u},{x}\right)}$$ so
$$\displaystyle{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{F}{\left({u},{x}\right)}={\frac{{\partial{u}}}{{\partial{x}}}}{f{{\left({u},{x}\right)}}}+{\frac{{\partial{x}}}{{\partial{x}}}}{f{{\left({u},{x}\right)}}}$$
Therefore
$$\displaystyle{I}'={f{{\left({v},{x}\right)}}}+{\frac{{\partial{v}}}{{\partial{x}}}}{f{{\left({v},{x}\right)}}}-{f{{\left({u},{x}\right)}}}-{\frac{{\partial{u}}}{{\partial{x}}}}{f{{\left({u},{x}\right)}}}$$
Now rearranging you can see that it starts to take on your form.
$$\displaystyle{I}'={v}'{f{{\left({v},{x}\right)}}}-{u}'{f{{\left({u},{x}\right)}}}+{f{{\left({v},{x}\right)}}}-{f{{\left({u},{x}\right)}}}$$
Now the last two terms can be written in terms of an integral.
$$\displaystyle{f{{\left({v},{x}\right)}}}-{f{{\left({u},{x}\right)}}}={\int_{{u}}^{{v}}}{f}'{\left({t},{x}\right)}{\left.{d}{t}\right.}$$
Which then can all come together to give
$$\displaystyle{I}'={v}'{f{{\left({v},{x}\right)}}}-{u}'{f{{\left({u},{x}\right)}}}+{\int_{{u}}^{{v}}}{\frac{{\partial}}{{\partial{x}}}}{f{{\left({t},{x}\right)}}}{\left.{d}{t}\right.}$$
$$\displaystyle\Rightarrow{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\int_{{v}}^{{u}}}{f{{\left({t},{x}\right)}}}{\left.{d}{t}\right.}={v}'{f{{\left({v},{x}\right)}}}-{u}'{f{{\left({u},{x}\right)}}}+{\int_{{v}}^{{u}}}{\frac{{\partial}}{{\partial{x}}}}{f{{\left({t},{x}\right)}}}{\left.{d}{t}\right.}$$
Which is the formula you want to prove.