# Proof of one inequality a+b+c\leq\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}

Proof of one inequality
$$\displaystyle{a}+{b}+{c}\leq{\frac{{{a}^{{3}}}}{{{b}{c}}}}+{\frac{{{b}^{{3}}}}{{{c}{a}}}}+{\frac{{{c}^{{3}}}}{{{a}{b}}}}$$

• Questions are typically answered in as fast as 30 minutes

### Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

Neil Dismukes
Using Cauchy-Schwarz Inequality twice:
$$\displaystyle{a}^{{4}}+{b}^{{4}}+{c}^{{4}}\geq{a}^{{2}}{b}^{{2}}+{b}^{{2}}{c}^{{2}}+{c}^{{2}}{a}^{{2}}\geq{a}{b}^{{2}}{c}+{b}{a}^{{2}}{c}+{a}{c}^{{2}}{b}={a}{b}{c}{\left({a}+{b}+{c}\right)}$$
###### Not exactly what youâ€™re looking for?
Dawn Neal
I have come up with an answer with myself. Using CS inequality
$$\displaystyle{\left({a}^{{4}}+{b}^{{4}}+{c}^{{4}}\right)}{\left({1}+{1}+{1}\right)}\geq{\left({a}^{{2}}+{b}^{{2}}+{c}^{{2}}\right)}^{{2}}$$
$$\displaystyle{\left({a}^{{2}}+{b}^{{2}}+{c}^{{2}}\right)}{\left({1}+{1}+{1}\right)}\geq{\left({a}+{b}+{c}\right)}^{{2}}$$
Hence we have
$$\displaystyle{a}^{{4}}+{b}^{{4}}+{c}^{{4}}\geq{\frac{{{\left({a}+{b}+{c}\right)}^{{4}}}}{{{27}}}}={\left({a}+{b}+{c}\right)}{\left({\frac{{{a}+{b}+{c}}}{{{3}}}}\right)}^{{3}}\geq{a}{b}{c}{\left({a}+{b}+{c}\right)}$$
Vasquez

By Holder
$$\sum_{\text{cyc}}\frac{a^3}{bc}\geq\frac{(a+b+c)^3}{3(ab+ac+bc)}=\frac{(a+b+c)\cdot(a+b+c)^2}{3(ab+ac+bc)}\geq a+b+c$$