# Evaluate integral: \int_0^\infty \frac{\ln x}{1+x^2}dx

Evaluate integral:
$$\displaystyle{\int_{{0}}^{\infty}}{\frac{{{\ln{{x}}}}}{{{1}+{x}^{{2}}}}}{\left.{d}{x}\right.}$$

• Questions are typically answered in as fast as 30 minutes

### Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

In general
$$\displaystyle{I}{\left(\alpha\right)}={\int_{{0}}^{{\infty}}}{\frac{{{\ln{{x}}}}}{{{x}^{{2}}+\alpha^{{2}}}}}{\left.{d}{x}\right.}$$
can be evaluated by using substitution $$\displaystyle{u}={\frac{{\alpha^{{2}}}}{{{x}}}}\Rightarrow{x}={\frac{{\alpha^{{2}}}}{{{u}}}}\Rightarrow{\left.{d}{x}\right.}=-{\frac{{\alpha^{{2}}}}{{{u}^{{2}}}}}{d}{u}$$, then
$$\displaystyle{I}{\left(\alpha\right)}={\int_{{0}}^{\infty}}{\frac{{{\ln{{\left({\frac{{\alpha^{{2}}}}{{{u}}}}\right)}}}}}{{{\left({\frac{{\alpha^{{2}}}}{{{u}}}}\right)}^{{2}}+\alpha^{{2}}}}}\cdot{\frac{{\alpha^{{2}}}}{{{u}^{{2}}}}}{d}{u}$$
$$\displaystyle={\int_{{0}}^{{\infty}}}{\frac{{{2}{\ln{\alpha}}-{\ln{{u}}}}}{{\alpha^{{2}}+{u}^{{2}}}}}{d}{u}$$
$$\displaystyle={2}{\ln{\alpha}}{\int_{{0}}^{{\infty}}}{\frac{{{1}}}{{\alpha^{{2}}+{u}^{{2}}}}}{d}{u}-{\int_{{0}}^{\infty}}{\frac{{{\ln{{u}}}}}{{{u}^{{2}}+\alpha^{{2}}}}}{d}{u}$$
$$=2\ln\alpha\int_0^{\infty}\frac{1}{\alpha^2+u^2}du-I(\alpha)$$
$$\displaystyle{I}{\left(\alpha\right)}={\ln{\alpha}}{\int_{{0}}^{\infty}}{\frac{{{1}}}{{\alpha^{{2}}+{u}^{{2}}}}}{d}{u}$$
The last integral can easily be evaluated since it is a common integral. Using substitution $$\displaystyle{u}={\tan{\theta}}$$, the integral turns out to be
$$\displaystyle{I}{\left(\alpha\right)}={\frac{{{\ln{\alpha}}}}{{\alpha}}}{\int_{{0}}^{{{\frac{{\pi}}{{{2}}}}}}}{d}\theta$$
$$\displaystyle={\frac{{\pi{\ln{\alpha}}}}{{{2}\alpha}}}$$
Thus
$$\displaystyle{I}{\left({1}\right)}={\int_{{0}}^{\infty}}{\frac{{{\ln{{x}}}}}{{{x}^{{2}}+{1}}}}{\left.{d}{x}\right.}={0}$$

###### Not exactly what youâ€™re looking for?
Ethan Sanders

Here's another general result, consider for $$\displaystyle{\left|{a}\right|}\leq{1}$$:
$$\displaystyle{I}{\left({a},{b}\right)}={\int_{{0}}^{\infty}}{\frac{{{x}^{{a}}}}{{{b}^{{2}}+{x}^{{2}}}}}{\left.{d}{x}\right.}$$
$$\displaystyle={\frac{{{b}^{{{a}-{1}}}}}{{{2}}}}{\int_{{0}}^{{\infty}}}{\frac{{{t}^{{\frac{{{a}-{1}}}{{2}}}}}}{{{1}+{t}}}}{\left.{d}{t}\right.}$$ (1)
$$\displaystyle={\frac{{{b}^{{{a}-{1}}}}}{{{2}}}}{B}{\left({\frac{{{1}+{a}}}{{{2}}}},{\frac{{{1}-{a}}}{{{2}}}}\right)}$$ (2)
$$\displaystyle={\frac{{{b}^{{{a}-{1}}}}}{{{2}}}}{\frac{{\pi}}{{{\cos{{\left({\frac{{\pi}}{{{2}}}}{a}\right)}}}}}}$$ (3)
(1) is by subst. $$\displaystyle{x}={b}\sqrt{{{t}}}$$
(2) is by the definition of Beta function: $$\displaystyle{B}{\left({a},{b}\right)}={\int_{{0}}^{\infty}}{\frac{{{x}^{{{a}-{1}}}}}{{{\left({1}+{x}\right)}^{{{a}+{b}}}}}}{\left.{d}{x}\right.}$$
(3) is by using $$\displaystyle{B}{\left({a},{b}\right)}={\frac{{\Gamma{\left({a}\right)}\Gamma{\left({b}\right)}}}{{\Gamma{\left({a}+{b}\right)}}}}$$ and Euler's reflection formula
$$\displaystyle\Gamma{\left({a}\right)}\Gamma{\left({1}-{a}\right)}={\frac{{\pi}}{{{\sin{{\left(\pi{a}\right)}}}}}}$$
Hence,
$$\displaystyle{\int_{{0}}^{{\infty}}}{\frac{{{x}^{{a}}{\left({\log{{x}}}\right)}^{{n}}}}{{{b}^{{2}}+{x}^{{2}}}}}{\left.{d}{x}\right.}={\frac{{{d}^{{n}}}}{{{d}{a}^{{n}}}}}{\left({\frac{{{b}^{{{a}-{1}}}}}{{{2}}}}{\frac{{\pi}}{{{\cos{{\left({\frac{{\pi}}{{{2}}}}{a}\right)}}}}}}\right)}$$
and when $$\displaystyle{b}={1},{n}={1},{a}={0}$$, the result is 0

karton

Another general approach :
Consider
$$\int_0^\infty\frac{x^{b-1}}{a^2+x^2}dx$$ (1)
Rewrite (1) as
$$\int_0^\infty\frac{x^{b-1}}{a^2+x^2}dx=\frac{1}{a^2}\int_0^{\infty}\frac{x^{b-1}}{1+(\frac{x}{a})^2}dx$$ (2)
Putting $$x=ay\Rightarrow dx=ady$$ yields
$$\int_0^\infty\frac{x^{b-1}}{a^2+x^2}dx=a^{b-2}\int_0^\infty\frac{y^{b-1}}{1+y^2}dy$$
where
$$\int_0^\infty\frac{y^{b-1}}{1+y^2}dy=\frac{\pi}{2\sin(\frac{b\pi}{2})}$$
Hence
$$\int_0^\infty\frac{x^{b-1}}{a^2+x^2}dx=\frac{\pi}{2}\cdot\frac{a^{b-2}}{\sin(\frac{b\pi}{2})}$$ (3)
Differentiating (3) with respect to b and setting b=1 yields
$$\int_0^\infty \frac{d}{db}[\frac{x^{b-1}}{a^2+x^2}]_{b=1}dx=\frac{\pi}{2}\frac{d}{db}[\frac{a^{b-2}}{\sin(\frac{b\pi}{2})}]_{b=1}$$
$$\int_0^\infty\frac{\ln x}{x^2+a^2}dx=\frac{\pi\ln a}{2\alpha}$$
Thus
$$\int_0^\infty\frac{\ln x}{x^2+1}dx=0$$