# (y-xy^{2})dx + (x + x^{2}y^{2})dy = 0; \text{when}\ y(1) =

$$\displaystyle{\left({y}-{x}{y}^{{{2}}}\right)}{\left.{d}{x}\right.}+{\left({x}+{x}^{{{2}}}{y}^{{{2}}}\right)}{\left.{d}{y}\right.}={0};\text{when}\ {y}{\left({1}\right)}={1}$$

• Questions are typically answered in as fast as 30 minutes

### Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

movingsupplyw1
Solution:
$$\displaystyle{\left({4}-{x}{y}^{{{2}}}\right)}{\left.{d}{x}\right.}+{\left({x}+{x}^{{{2}}}{y}^{{{2}}}\right)}{\left.{d}{x}\right.}={0}$$
$$\displaystyle{\left({4}{\left.{d}{x}\right.}+{x}{\left.{d}{y}\right.}\right)}-{\left({x}{y}^{{{2}}}{\left.{d}{y}\right.}-{x}^{{{2}}}{y}^{{{2}}}\right)}={0}$$
$$\displaystyle{d}{\left({x}{y}\right)}-{\left({x}{y}\right)}^{{{2}}}{\left[{\frac{{{\left.{d}{x}\right.}}}{{{x}}}}-{\left.{d}{y}\right.}\right]}={0}$$
$$\displaystyle\int{\frac{{{d}{\left({x}{y}\right)}}}{{{\left({x}{y}\right)}^{{{2}}}}}}-\int{\frac{{{\left.{d}{x}\right.}}}{{{x}}}}+\int{\left.{d}{y}\right.}={0}$$
$$\displaystyle\Rightarrow-{\frac{{{1}}}{{{x}\cdot{y}}}}-{\ln{{x}}}+{y}={C}$$
put $$\displaystyle{4}{\left({1}\right)}={1}$$
$$\displaystyle-{\frac{{{1}}}{{{1}\cdot{1}}}}-{\ln{{1}}}+{1}={C}\Rightarrow-{1}-{0}+{1}={C}$$
$$\displaystyle{c}={0}$$
Hence, $$\displaystyle-{\frac{{{1}}}{{{x}\cdot{y}}}}\cdot{\ln{{x}}}+{y}={0}$$
###### Not exactly what you’re looking for?
SlabydouluS62
Consider the differential equation
$$\displaystyle{\left({y}-{x}{y}^{{{2}}}\right)}{\left.{d}{x}\right.}+{\left({x}+{x}^{{{2}}}{y}^{{{2}}}\right)}{\left.{d}{y}\right.}={0}$$
$$\displaystyle{y}{\left.{d}{x}\right.}-{x}{y}^{{{2}}}{\left.{d}{x}\right.}+{x}{\left.{d}{y}\right.}+{x}^{{{2}}}{y}^{{{2}}}{\left.{d}{y}\right.}={0}$$
$$\displaystyle{\left({y}{\left.{d}{x}\right.}+{x}{\left.{d}{y}\right.}\right)}+{\left({x}^{{{2}}}{y}^{{{2}}}{\left.{d}{y}\right.}-{x}{y}^{{{2}}}{\left.{d}{x}\right.}\right)}={0}$$
$$\displaystyle{d}{\left({x}{y}\right)}+{x}{y}{\left({x}{y}{\left.{d}{y}\right.}-{y}{\left.{d}{x}\right.}\right)}={0}$$
$$\displaystyle{d}{\left({x}{y}\right)}+{x}^{{{2}}}{y}^{{{2}}}{\left.{d}{y}\right.}-{x}{y}^{{{2}}}{\left.{d}{x}\right.}={0}$$
Dividing by $$\displaystyle{x}^{{{2}}}{y}^{{{2}}}$$
$$\displaystyle{d}\frac{{{x}{y}}}{{{x}^{{{2}}}{y}^{{{2}}}}}+{\left.{d}{y}\right.}-\frac{{\left.{d}{x}\right.}}{{x}}={0}$$
$$\displaystyle{d}\frac{{{x}{y}}}{{{\left({x}{y}\right)}^{{{2}}}}}+{\left.{d}{y}\right.}-\frac{{\left.{d}{x}\right.}}{{x}}={0}$$
Integrating the equation above we get
$$\displaystyle∫{\left[{d}\frac{{{x}{y}}}{{{\left({x}{y}\right)}^{{{2}}}}}\right]}+\int{\left.{d}{y}\right.}-\int\frac{{\left.{d}{x}\right.}}{{x}}={C}$$…..(1)
Where 'C' is constant of integration
Now say $$\displaystyle\int\frac{{\left.{d}{z}\right.}}{{z}^{{{2}}}}=-\frac{{1}}{{z}}$$
$$\displaystyle\int{x}^{{{n}}}{\left.{d}{x}\right.}={x}^{{{n}}}+\frac{{1}}{{{n}+{1}}}+{c}\ \text{for}\ {n}\ne-{1}$$
$$\displaystyle\int\frac{{\left.{d}{x}\right.}}{{x}}={\ln{{x}}}+{c}$$
Using these identities if $$\displaystyle{z}={x}{y}$$ then the above eqn.(1) becomes
$$\displaystyle-\frac{{1}}{{{x}{y}}}+{y}-{\ln{{x}}}={C}$$
Multiply throughout by xy in the above equation we get
$$\displaystyle-{1}+{x}{y}^{{{2}}}-{x}{y}{\ln{{x}}}={C}{x}{y}$$
Therefore the solution of the equation is
$$\displaystyle{x}{y}^{{{2}}}-{x}{y}{\ln{{x}}}-{1}={C}{x}{y}$$.
Where 'C' is any arbitrary constant.