Question

(x^4y^5)^(1/4)(x^8y^5)^(1/5)=x^(j/5)y^(k/4)In the equation above, j and k are constants. If the equation is true for all positive real values of x and y, what is the value of j - k?A)3B)4C)5D)6

Upper Level Math
ANSWERED
asked 2021-03-08

\(\displaystyle{\left({x}^{{4}}{y}^{{5}}\right)}^{{\frac{{1}}{{4}}}}{\left({x}^{{8}}{y}^{{5}}\right)}^{{\frac{{1}}{{5}}}}={x}^{{\frac{{j}}{{5}}}}{y}^{{\frac{{k}}{{4}}}}\)
In the equation above, j and k are constants. If the equation is true for all positive real values of x and y, what is the value of \(j - k\)?
A)3
B)4
C)5
D)6

Answers (1)

2021-03-09

Step 1
The given equation is, \(\displaystyle{\left({x}^{{4}}{y}^{{5}}\right)}^{{\frac{{1}}{{4}}}}{\left({x}^{{8}}{y}^{{5}}\right)}^{{\frac{{1}}{{5}}}}={x}^{{\frac{{j}}{{5}}}}{y}^{{\frac{{k}}{{4}}}}\)
Step 2
Assume that the abive equation is true for all positive real values of x and y.
Now obtain the values of constants j and k as shown below.
\(\displaystyle{\left({x}^{{4}}{y}^{{5}}\right)}^{{\frac{{1}}{{4}}}}{\left({x}^{{8}}{y}^{{5}}\right)}^{{\frac{{1}}{{5}}}}={x}^{{\frac{{j}}{{5}}}}{y}^{{\frac{{k}}{{4}}}}\)
\(\displaystyle{\left({x}^{{4}}\right)}^{{\frac{{1}}{{4}}}}{\left({y}^{{5}}\right)}^{{\frac{{1}}{{4}}}}{\left({x}^{{8}}\right)}^{{\frac{{1}}{{5}}}}{\left({y}^{{5}}\right)}^{{\frac{{1}}{{5}}}}={x}^{{\frac{{j}}{{5}}}}{y}^{{\frac{{k}}{{4}}}}\)
\(\displaystyle{\left({x}{y}^{{\frac{{5}}{{4}}}}\right)}{\left({x}^{{\frac{{8}}{{5}}}}\right)}={x}^{{\frac{{j}}{{5}}}}{y}^{{\frac{{k}}{{4}}}}\)
\(\displaystyle{\left({x}^{{{1}+\frac{{8}}{{5}}}}\right)}{\left({y}^{{{1}+\frac{{5}}{{4}}}}\right)}={x}^{{\frac{{j}}{{5}}}}{y}^{{\frac{{k}}{{4}}}}\)
\(\displaystyle{x}^{{\frac{{13}}{{5}}}}{y}^{{\frac{{9}}{{4}}}}={x}^{{\frac{{j}}{{5}}}}{y}^{{\frac{{k}}{{4}}}}\)
Step 3
Equate the powers and obtain the values of j and k as follows.
\(\displaystyle\frac{{j}}{{5}}=\frac{{13}}{{5}}\)
\(j=13\)
\(\displaystyle\frac{{k}}{{4}}=\frac{{9}}{{4}}\)
\(k=9\)
Now compute the difference \(j-k\) as shown below.
\(j-k=13-9\)
\(=4 \)

Therefore, the correct option is B.

0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2021-02-05

Advanced Math
Which one is a simplified expression for \(A(A'+B')(B+C)(B+C'+D)\)

asked 2021-01-02

The rate of change of the volume of a snowball that is melting is proportional to the surface area of the snowball. Suppose the snowball is perfectly spherical. Then the volume (in centimeters cubed) of a ball of radius r centimeters is \(\displaystyle\frac{{4}}{{3}}\pi{r}^{{3}}\). The surface area is \(\displaystyle{4}\pi{r}^{{2}}\).Set up the differential equation for how r is changing. Then, suppose that at time \(t = 0\) minutes, the radius is 10 centimeters. After 5 minutes, the radius is 8 centimeters. At what time t will the snowball be completely melted.

asked 2021-02-25
Paulie Gone has a shiny red wagon. When he puts his puppy, Hypotenuse, in the wagon, the wagon weighs in at 40 pounds. When Paulie rides the wagon by himself, the wagon weighs in at 64 pounds. Paulie weighs 3 times as much as Hypotenuse, how much does the empty wagon weigh?
asked 2021-05-10
Hypothetical potential energy curve for aparticle of mass m
If the particle is released from rest at position r0, its speed atposition 2r0, is most nearly
a) \(\displaystyle{\left({\frac{{{8}{U}{o}}}{{{m}}}}\right)}^{{1}}{\left\lbrace/{2}\right\rbrace}\)
b) \(\displaystyle{\left({\frac{{{6}{U}{o}}}{{{m}}}}\right)}^{{\frac{{1}}{{2}}}}\)
c) \(\displaystyle{\left({\frac{{{4}{U}{o}}}{{{m}}}}\right)}^{{\frac{{1}}{{2}}}}\)
d) \(\displaystyle{\left({\frac{{{2}{U}{o}}}{{{m}}}}\right)}^{{\frac{{1}}{{2}}}}\)
e) \(\displaystyle{\left({\frac{{{U}{o}}}{{{m}}}}\right)}^{{\frac{{1}}{{2}}}}\)
if the potential energy function is given by
\(\displaystyle{U}{\left({r}\right)}={b}{r}^{{P}}-\frac{{3}}{{2}}\rbrace+{c}\)
where b and c are constants
which of the following is an edxpression of the force on theparticle?
1) \(\displaystyle{\frac{{{3}{b}}}{{{2}}}}{\left({r}^{{-\frac{{5}}{{2}}}}\right)}\)
2) \(\displaystyle{\frac{{{3}{b}}}{{{2}}}}{\left\lbrace{3}{b}\right\rbrace}{\left\lbrace{2}\right\rbrace}{\left({r}^{{-\frac{{1}}{{2}}}}\right)}\)
3) \(\displaystyle{\frac{{{3}{b}}}{{{2}}}}{\left\lbrace{3}\right\rbrace}{\left\lbrace{2}\right\rbrace}{\left({r}^{{-\frac{{1}}{{2}}}}\right)}\)
4) \(\displaystyle{2}{b}{\left({r}^{{-\frac{{1}}{{2}}}}\right)}+{c}{r}\)
5) \(\displaystyle{\frac{{{3}{b}}}{{{2}}}}{\left\lbrace{2}{b}\right\rbrace}{\left\lbrace{5}\right\rbrace}{\left({r}^{{-\frac{{5}}{{2}}}}\right)}+{c}{r}\)
...