# Evaluate the following indefinite integral. \int \cos^{4}(x)\sin(x)dx

Judith McQueen 2022-01-07 Answered
Evaluate the following indefinite integral.
$$\displaystyle\int{{\cos}^{{{4}}}{\left({x}\right)}}{\sin{{\left({x}\right)}}}{\left.{d}{x}\right.}$$

• Live experts 24/7
• Questions are typically answered in as fast as 30 minutes
• Personalized clear answers

### Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

macalpinee3

Step 1
See attached file for a step by step explanation to find the given integral.
Step 2
Solution $$\displaystyle\int{{\cos}^{{{4}}}{\left({x}\right)}}{\sin{{\left({x}\right)}}}{\left.{d}{x}\right.}$$
$$\displaystyle\Rightarrow\int{\left({\cos{{\left({x}\right)}}}\right)}^{{{4}}}{\sin{{\left({x}\right)}}}{\left.{d}{x}\right.}$$
Let $$\cos(x)=t$$
differentiate $$\displaystyle-{\sin{{\left({x}\right)}}}{\left.{d}{x}\right.}={\left.{d}{t}\right.}$$
$$\displaystyle{\sin{{\left({x}\right)}}}{\left.{d}{x}\right.}=-{\left.{d}{t}\right.}$$
$$\displaystyle\Rightarrow\int{t}^{{{4}}}{\left(-{\left.{d}{t}\right.}\right)}$$
$$\displaystyle\Rightarrow-\int{t}^{{{4}}}{\left.{d}{t}\right.}$$
$$\displaystyle\Rightarrow-{\frac{{{t}^{{{5}}}}}{{{5}}}}+{c}$$
put $$\displaystyle{t}={\cos{{\left({x}\right)}}}$$
$$\displaystyle\Rightarrow-{\frac{{{{\cos}^{{{5}}}{x}}}}{{{5}}}}+{c}$$ or $$\displaystyle-{\frac{{{\left({\cos{{x}}}\right)}^{{{5}}}}}{{{5}}}}+{c}$$

###### Not exactly what youâ€™re looking for?
Jenny Sheppard
$$\displaystyle{\left(-{\sin{{\left({x}\right)}}}\right)}{\left.{d}{x}\right.}={d}{\left({\cos{{\left({x}\right)}}}\right)},{t}={\cos{{\left({x}\right)}}}$$
$$\displaystyle\int{\left(-{t}^{{{4}}}\right)}{\left.{d}{t}\right.}$$
This is a tabular integral:
$$\displaystyle\int-{t}^{{{4}}}{\left.{d}{t}\right.}=-{\frac{{{t}^{{{5}}}}}{{{5}}}}+{C}$$
To write down the final answer, it remains to substitute $$\displaystyle{\cos{{\left({x}\right)}}}$$ instead of t.
Result:
$$\displaystyle-{\frac{{{\cos{{\left({x}\right)}}}^{{{5}}}}}{{{5}}}}+{C}$$
karton

$$\\\text{We have:} \\\int \cos(x)^{4}\sin(x)dx \\\int -t^{4}dt \\-\int t^{4}dt \\\text{Evaluate} \\-\frac{t^{5}}{5} \\-\frac{\cos(x)^{5}}{5} \\\text{Answer:} \\-\frac{\cos(x)^{5}}{5}+C$$