Given \int (x^{5}-3x^{4}+6x^{3}+3)dx, evaluate the indefinite integral.

Concepcion Hale 2022-01-07 Answered
Given \(\displaystyle\int{\left({x}^{{{5}}}-{3}{x}^{{{4}}}+{6}{x}^{{{3}}}+{3}\right)}{\left.{d}{x}\right.}\), evaluate the indefinite integral.

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question

Expert Answer

Beverly Smith
Answered 2022-01-08 Author has 2063 answers
Step 1
The given integral is \(\displaystyle\int{\left({x}^{{{5}}}-{3}{x}^{{{4}}}+{6}{x}^{{{3}}}+{3}\right)}{\left.{d}{x}\right.}\).
obtain the integral value as follows.
\(\displaystyle\int{\left({x}^{{{5}}}-{3}{x}^{{{4}}}+{6}{x}^{{{3}}}+{3}\right)}{\left.{d}{x}\right.}=\int{x}^{{{5}}}{\left.{d}{x}\right.}-\int{3}{x}^{{{4}}}{\left.{d}{x}\right.}+\int{6}{x}^{{{3}}}{\left.{d}{x}\right.}+\int{3}{\left.{d}{x}\right.}\)
\(\displaystyle={\frac{{{x}^{{{6}}}}}{{{6}}}}-{3}{\left({\frac{{{x}^{{{5}}}}}{{{5}}}}\right)}+{6}{\left({\frac{{{x}^{{{4}}}}}{{{4}}}}\right)}+{3}{x}+{C}\)
\(\displaystyle={\frac{{{x}^{{{6}}}}}{{{6}}}}-{\frac{{{3}{x}^{{{5}}}}}{{{5}}}}+{\frac{{{3}{x}^{{{4}}}}}{{{2}}}}+{3}{x}+{C}\)
Thus, the value of the integral is \(\displaystyle{\frac{{{x}^{{{6}}}}}{{{6}}}}-{\frac{{{3}{x}^{{{5}}}}}{{{5}}}}+{\frac{{{3}{x}^{{{4}}}}}{{{2}}}}+{3}{x}\)
Step 2
Answer:
The value of the given integral is \(\displaystyle{\left(\frac{{x}^{{{6}}}}{{6}}\right)}-{3}{\left(\frac{{x}^{{{5}}}}{{5}}\right)}+{3}{\left(\frac{{x}^{{{4}}}}{{2}}\right)}+{3}{x}\).
Not exactly what you’re looking for?
Ask My Question
0
 
ambarakaq8
Answered 2022-01-09 Author has 1294 answers
Given integral.
\(\displaystyle\int{x}^{{{5}}}-{3}{x}^{{{4}}}+{6}{x}^{{{3}}}+{3}{\left.{d}{x}\right.}\)
\(\displaystyle\int{x}^{{{5}}}{\left.{d}{x}\right.}-\int{3}{x}^{{{4}}}{\left.{d}{x}\right.}+\int{6}{x}^{{{3}}}{\left.{d}{x}\right.}+\int{3}{\left.{d}{x}\right.}\)
Evaluate
\(\displaystyle{\frac{{{x}^{{{6}}}}}{{{6}}}}-{\frac{{{3}{x}^{{{5}}}}}{{{5}}}}+{\frac{{{3}{x}^{{{4}}}}}{{{2}}}}+{3}{x}\)
Add C
Answer:
\(\displaystyle{\frac{{{x}^{{{6}}}}}{{{6}}}}-{\frac{{{3}{x}^{{{5}}}}}{{{5}}}}+{\frac{{{3}{x}^{{{4}}}}}{{{2}}}}+{3}{x}+{C}\)
0
karton
Answered 2022-01-11 Author has 8658 answers

\(I=\int (x^{5}-3x^{4}+6x^{3}+3)dx \\\text{we know that} \\\int x^{n}dx=\frac{x^{n+1}}{n+1} \\I=\frac{x^{5+1}}{5+1}-\frac{3x^{4+1}}{4+1}+\frac{6x^{3+1}}{3+1}+3x \\I=\frac{x^{6}}{6}-\frac{3x^{5}}{5}+\frac{6x^{4}}{4}+3x \\I=\frac{x^{6}}{6}-\frac{3}{5}x^{5}+\frac{3}{2}x^{4}+3x\)

0

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more
...