# Evaluate the following derivatives. d/(dx)[(2x)^(4x)]

Evaluate the following derivatives.
$\frac{d}{dx}\left[{\left(2x\right)}^{4x}\right]$
You can still ask an expert for help

## Want to know more about Derivatives?

• Live experts 24/7
• Questions are typically answered in as fast as 30 minutes
• Personalized clear answers

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

lamusesamuset
Step 1
Given,
$\frac{d}{dx}\left[{\left(2x\right)}^{4x}\right]$
Step 2
Given equation can be written as
$\frac{d}{dx}\left[{\left(2x\right)}^{4x}\right]=2\frac{d}{dx}\left[{\left(x\right)}^{4x}\right]$
We can write ${x}^{4x}$ as follows
${x}^{4x}={e}^{\mathrm{ln}\left({x}^{4x}\right)}$
${e}^{4x\mathrm{ln}\left(x\right)}$
Hence
$\frac{d}{dx}\left[{\left(2x\right)}^{4x}\right]=2\frac{d}{dx}\left[{e}^{4x\mathrm{ln}\left(x\right)}\right]$
We apply the chain rule
$\frac{d}{dx}\left[{\left(2x\right)}^{4x}\right]=2\left[{e}^{4x\mathrm{ln}\left(x\right)}\right]\frac{d}{dx}\left[4x\mathrm{ln}\left(x\right)\right]$
$=2\left[{e}^{4x\mathrm{ln}\left(x\right)}\right]4\left[x×\frac{1}{x}+\mathrm{ln}\left(x\right)\right]$
$=2\left[{e}^{4x\mathrm{ln}\left(x\right)}\right]\left[1+\mathrm{ln}\left(x\right)\right]$
$2{x}^{4x}\left[1+l\left(x\right)\right]$