Find all first and the second partial derivatives. f(x,y)=2x^5y^2+x^2y

Find all first and the second partial derivatives. f(x,y)=2x^5y^2+x^2y

Question
Derivatives
asked 2021-03-02
Find all first and the second partial derivatives.
\(\displaystyle{f{{\left({x},{y}\right)}}}={2}{x}^{{5}}{y}^{{2}}+{x}^{{2}}{y}\)

Answers (1)

2021-03-03
Step 1 Let us find first and second order partial derivatives.
First order partial derivatives:
\(\displaystyle{f}_{{x}}=\frac{{\partial{f}}}{{\partial{x}}}{f}_{{y}}=\frac{{\partial{f}}}{{\partial{y}}}\)
Second order partial derivatives:
\(\displaystyle{f}_{{\times}}=\frac{{\partial^{{2}}{f}}}{{\partial{x}^{{2}}}}=\frac{\partial}{{\partial{x}}}{\left(\frac{\partial}{{\partial{x}}}\right)},{f}_{{{y}{y}}}=\frac{{\partial^{{2}}{f}}}{{\partial{y}^{{2}}}}=\frac{\partial}{{\partial{y}}}{\left(\frac{\partial}{{\partial{y}}}\right)}\)
Step 2 Answer will be at end of step 2
\(\displaystyle{f{{\left({x},{y}\right)}}}={2}{x}^{{5}}{y}^{{2}}+{x}^{{2}}{y}\)
First ordrer partial derivative:
\(\displaystyle{f}_{{x}}=\frac{{\partial{f}}}{{\partial{x}}}={2}.{\left({5}\right)}{x}^{{{5}-{1}}}{y}^{{2}}+{2}{x}^{{{2}-{1}}}{y}\)
\(\displaystyle{f}_{{x}}={10}{x}^{{4}}{y}^{{2}}+{2}{x}{y}\)
\(\displaystyle{f}_{{y}}=\frac{{\partial{f}}}{{\partial{y}}}={2}{x}^{{5}}.{\left({2}\right)}{y}^{{{2}-{1}}}+{x}^{{2}}\)
\(\displaystyle{f}_{{y}}={4}{x}^{{5}}{y}+{x}^{{2}}\)
Second order partial derivative:
\(\displaystyle{f}_{{\times}}\frac{\partial}{{\partial{x}}}{\left({10}{x}^{{4}}{y}^{{2}}+{2}{x}{y}\right)}\)
\(\displaystyle{f}_{{\times}}{4}.{\left({10}\right)}{x}^{{3}}{y}^{{2}}+{2}{y}\)
\(\displaystyle{f}_{{\times}}={40}{x}^{{3}}{y}^{{2}}+{2}{y}\)
\(\displaystyle{f}_{{{y}{y}}}=\frac{\partial}{{\partial{y}}}{\left({4}{x}^{{5}}{y}+{x}^{{2}}\right)}\)
\(\displaystyle{f}_{{{y}{y}}}={4}{x}^{{5}}\)
Step 3
Result:
\(\displaystyle{f}_{{x}}={10}{x}^{{4}}{y}^{{2}}+{2}{x}{y}\)
\(\displaystyle{f}_{{y}}={4}{x}^{{5}}{y}+{x}^{{2}}\)
\(\displaystyle{f}_{{\times}}={40}{x}^{{3}}{y}^{{2}}+{2}{y}\)
\(\displaystyle{f}_{{{y}{y}}}={4}{x}^{{5}}\)
0

Relevant Questions

asked 2021-04-10
Find both first partial derivatives.
\(\displaystyle{f{{\left({x},{y}\right)}}}={2}{x}-{5}{y}+{3}\)
asked 2021-05-09
Find all the second partial derivatives.
\(\displaystyle{f{{\left({x},{y}\right)}}}={x}^{{{4}}}{y}-{2}{x}^{{{5}}}{y}^{{{2}}}\)
\(\displaystyle{{f}_{{\times}}{\left({x},{y}\right)}}=\)
\(\displaystyle{{f}_{{{x}{y}}}{\left({x},{y}\right)}}=\)
\(\displaystyle{{f}_{{{y}{x}}}{\left({x},{y}\right)}}=\)
\(\displaystyle{{f}_{{{y}{y}}}{\left({x},{y}\right)}}=\)
asked 2021-04-19
Find all the second partial derivatives.
\(\displaystyle{f{{\left({x},{y}\right)}}}={\ln{{\left({a}{x}+{b}{y}\right)}}}\)
asked 2021-05-09
Find all first partial derivatives of the following function.
\(\displaystyle{f{{\left({x},{y}\right)}}}={y}{\cos{{\left({x}^{{{2}}}+{y}^{{{2}}}\right)}}}\)
asked 2021-02-22
Find all first partial derivatives of the following function.
\(\displaystyle{f{{\left({x},{y}\right)}}}={\left({4}{x}-{y}^{{{2}}}\right)}^{{{\frac{{{3}}}{{{2}}}}}}\)
asked 2021-02-20
Find the first partial derivatives of the given functions with respect to each independent variable.
\(\displaystyle{f{{\left({x},{y}\right)}}}={\left({2}{x}-{4}\right)}^{{{4}}}\)
asked 2021-02-19
Find all first partial derivatives. \(\displaystyle{f{{\left({x},{y}\right)}}}={e}^{{{x}}}{\cos{{y}}}\)
asked 2021-05-25
Find all second-order partial derivatives for the following.
\(\displaystyle{k}{\left({x},{y}\right)}={\frac{{-{7}{x}}}{{{2}{x}+{3}{y}}}}\)
asked 2021-04-24
Find the second partial derivatives for the function \(\displaystyle{f{{\left({x},{y}\right)}}}={x}^{{{4}}}-{3}{x}^{{{2}}}{y}^{{{2}}}+{y}^{{{2}}}\) and evaluate it at the point(1,0).
asked 2021-06-06
Find all the second-order partial derivatives of the functions \(\displaystyle{f{{\left({x},{y}\right)}}}={\sin{{x}}}{y}\)
...