X=\log_{12}18 and Y=\log_{24}54. Find XY+5(X−Y)

Harold Kessler 2022-01-01 Answered
\(\displaystyle{X}={{\log}_{{{12}}}{18}}\) and \(\displaystyle{Y}={{\log}_{{{24}}}{54}}\). Find \(\displaystyle{X}{Y}+{5}{\left({X}−{Y}\right)}\)

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question

Expert Answer

Andrew Reyes
Answered 2022-01-02 Author has 2435 answers
Let \(\displaystyle{I}={\frac{{{\log{{18}}}}}{{{\log{{12}}}}}}\cdot{\frac{{{\log{{54}}}}}{{{\log{{24}}}}}}+{5}{\left({\frac{{{\log{{18}}}}}{{{\log{{12}}}}}}−{\frac{{{\log{{54}}}}}{{{\log{{24}}}}}}\right)}\) . Also, let \(\displaystyle{\log{{3}}}={x}\) and \(\displaystyle{\log{{2}}}={y}.\)
Then,
\(\displaystyle{I}={\frac{{{{\log{{3}}}^{{2}}\cdot}{2}}}{{{{\log{{2}}}^{{2}}\cdot}{3}}}}\cdot{\frac{{{{\log{{3}}}^{{3}}\cdot}{2}}}{{{{\log{{2}}}^{{3}}\cdot}{3}}}}+{5}{\left({\frac{{{{\log{{3}}}^{{2}}\cdot}{2}}}{{{{\log{{2}}}^{{2}}\cdot}{3}}}}-{\frac{{{{\log{{3}}}^{{3}}\cdot}{2}}}{{{{\log{{2}}}^{{3}}\cdot}{3}}}}\right)}={\frac{{{2}{x}+{y}}}{{{2}{y}+{x}}}}\cdot{\frac{{{3}{x}+{y}}}{{{3}{y}+{x}}}}+{5}{\left({\frac{{{2}{x}+{y}}}{{{2}{y}+{x}}}}-{\frac{{{3}{x}+{y}}}{{{3}{y}+{x}}}}\right)}\)
\(\displaystyle={\frac{{{6}{x}^{{2}}+{5}{x}{y}+{y}^{{2}}+{10}{x}^{{2}}+{35}{x}{y}+{15}{y}^{{2}}-{35}{x}{y}-{10}{y}^{{2}}}}{{{\left({2}{y}+{x}\right)}{\left({3}{y}+{x}\right)}}}}\)
\(\displaystyle={\frac{{{x}^{{2}}+{5}{x}{y}+{6}{y}^{{2}}}}{{{x}^{{2}}+{5}{x}{y}+{6}{y}^{{2}}}}}={1}\)
Not exactly what you’re looking for?
Ask My Question
0
 
Daniel Cormack
Answered 2022-01-03 Author has 1028 answers
Note that \(\displaystyle{X}{Y}+{5}{\left({X}−{Y}\right)}={\left({X}−{5}\right)}{\left({Y}+{5}\right)}+{25}\), so it suffices to find \(\displaystyle{\left({X}−{5}\right)}{\left({Y}+{5}\right)}\).
\(\displaystyle{\left({X}−{5}\right)}={{\log}_{{{12}}}{\left({18}\right)}}−{5}={{\log}_{{{12}}}{\frac{{{18}}}{{{12}^{{5}}}}}}={{\log}_{{{12}}}{3}^{{−{3}}}}{2}^{{−{9}}}=−{3}{{\log}_{{{12}}}{\left({24}\right)}}.\)
\(\displaystyle{\left({Y}+{5}\right)}={{\log}_{{{24}}}{\left({54}\right)}}+{5}={{\log}_{{{24}}}{\left({54}\cdot{24}^{{5}}\right)}}={{\log}_{{{24}}}{\left({2}^{{{16}}}{3}^{{8}}\right)}}={8}{{\log}_{{{24}}}{\left({12}\right)}}.\)
Multiplying together gives \(\displaystyle−{24}{{\log}_{{{12}}}{\left({24}\right)}}{{\log}_{{{24}}}{\left({12}\right)}}=−{24}{{\log}_{{{12}}}{\left({12}\right)}}=−{24}.\)
Adding \(\displaystyle{25}\) to this gives \(\displaystyle{1}\), which is your answer.
0

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more
...