Evaluate the following derivatives. d/(dx)((x+1)^(2x))

Evaluate the following derivatives. d/(dx)((x+1)^(2x))

Question
Derivatives
asked 2021-02-19
Evaluate the following derivatives. \(\displaystyle\frac{{d}}{{{\left.{d}{x}\right.}}}{\left({\left({x}+{1}\right)}^{{{2}{x}}}\right)}\)

Answers (1)

2021-02-20
Step 1
To Determine: Evaluate the following derivatives.
Given: we have a function \(\displaystyle{\left({x}+{1}\right)}^{{2}}{x}\)
Explanation, we have a function \(\displaystyle{y}={\left({x}+{1}\right)}^{{2}}{x}\) we have to find the derivative of y now we will applying exponent rule \(\displaystyle{a}^{{b}}={e}^{{{b}{\ln{{\left({a}\right)}}}}}{s}{o}{w}{e}{h}{a}{v}{e}{\left({x}+{1}\right)}^{{2}}{x}={e}^{{{2}{x}{\ln{{\left({x}+{1}\right)}}}}}\) now we will applying the chain rule
\(\displaystyle\frac{{d}}{{{\left.{d}{x}\right.}}}{\left({e}^{{{2}{x}{\ln{{\left({x}+{1}\right)}}}}}\right)}={e}^{{{2}{x}{\ln{{\left({x}+{1}\right)}}}}}\frac{{d}}{{{\left.{d}{x}\right.}}}{\left({2}{x}{\ln{{\left({x}+{1}\right)}}}\right)}\)
Step 2
Now we will use product rule
\(\displaystyle{e}^{{{2}{x}{\ln{{\left({x}+{1}\right)}}}}}\frac{{d}}{{{\left.{d}{x}\right.}}}{\left({2}{x}{\ln{{\left({x}+{1}\right)}}}\right)}={e}^{{{2}{x}{\ln{{\left({x}+{1}\right)}}}}}\times{2}\times{\left[{x}\frac{{d}}{{{\left.{d}{x}\right.}}}{\ln{{\left({x}+{1}\right)}}}+{\ln{{\left({x}+{1}\right)}}}\frac{{{\left.{d}{x}\right.}}}{{{\left.{d}{x}\right.}}}\right]}\)
\(\displaystyle={2}{e}^{{{2}{x}{\ln{{\left({x}+{1}\right)}}}}}{\left[\frac{{x}}{{{x}+{1}}}+{\ln{{\left({x}+{1}\right)}}}\right]}\)
\(\displaystyle={2}{\left({x}+{1}\right)}^{{{2}{x}}}{\left[\frac{{x}}{{{x}+{1}}}+{\ln{{\left({x}+{1}\right)}}}\right]}\)
0

Relevant Questions

asked 2021-02-22
Evaluate the following derivatives.
\(\displaystyle{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\int_{{-{x}}}^{{{x}}}}{\frac{{{\left.{d}{t}\right.}}}{{{t}^{{{10}}}+{1}}}}\)
asked 2021-02-22
Evaluate the following derivatives.
\(\displaystyle{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\int_{{{7}}}^{{{x}}}}\sqrt{{{1}+{t}^{{{4}}}+{t}^{{{6}}}}}{\left.{d}{t}\right.}\)
asked 2021-02-13
Evaluate the following derivatives.
\(\displaystyle{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\int_{{{3}}}^{{{e}^{{{x}}}}}}{{\cos{{t}}}^{{{2}}}{\left.{d}{t}\right.}}\)
asked 2021-02-14
Evaluate the following derivatives.
\(\displaystyle{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\int_{{{x}}}^{{{5}}}}{{\sin{{w}}}^{{{6}}}{d}}{w}\)
asked 2021-04-23
Using the Extended Power Rule Find the following derivatives.
\(\displaystyle{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left({\frac{{{9}}}{{{x}^{{{5}}}}}}\right)}\)
asked 2021-04-14
Find the following higher-order derivatives.
\(\displaystyle{\frac{{{d}^{{{n}}}}}{{{\left.{d}{x}\right.}^{{{n}}}}}}{\left({2}^{{{x}}}\right)}\)
asked 2021-05-21
Compute the following derivatives
\(\displaystyle{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left[{\frac{{{\sin{{x}}}}}{{{1}+{\cos{{x}}}}}}\right]}\)
asked 2021-02-22
Second derivatives Find \frac{d^{2}y}{dx^{2}}.
\(\displaystyle{x}+{y}^{{{2}}}={1}\)
asked 2021-05-31
Compute the following derivatives
\(\displaystyle{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left[{x}^{{{4}}}{{\tan}^{{{3}}}{\left({x}^{{{2}}}\right)}}\right]}\)
asked 2021-05-02
Use Part 2 of the fundamental Theorem of Calculus to find the derivatives.
\(\displaystyle{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\int_{{{1}}}^{{{x}}}}{\ln{{t}}}{\left.{d}{t}\right.}\)
...