y'+\frac{1}{x}y=\cos (x)

Gregory Emery 2022-01-01 Answered
\(\displaystyle{y}'+{\frac{{{1}}}{{{x}}}}{y}={\cos{{\left({x}\right)}}}\)

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question

Expert Answer

vrangett
Answered 2022-01-02 Author has 4029 answers
Given: \(\displaystyle{y}'+{\frac{{{1}}}{{{x}}}}{y}={\cos{{x}}}\)
Solution:
\(\displaystyle{y}^{{{1}}}+{\frac{{{1}}}{{{x}}}}{y}={\cos{{x}}}\)
comparing with the equation
\(\displaystyle{y}'+{p}{\left({x}\right)}{y}={q}{\left({x}\right)}\)
\(\displaystyle{p}{\left({x}\right)}={\frac{{{1}}}{{{x}}}},{q}{\left({x}\right)}={\cos{{x}}}\)
\(\displaystyle{M}=\text{Integrating factor}={e}^{{\int{p}{\left({x}\right)}{\left.{d}{x}\right.}}}\)
\(\displaystyle={e}^{{\int{\frac{{{1}}}{{{x}}}}{\left.{d}{x}\right.}}}\)
\(\displaystyle={e}^{{{\ln{{x}}}}}\)
\(\displaystyle{m}={x}\)
general solution is,
\(\displaystyle{y}_{{{m}}}=\int{q}{\left({x}\right)}{m}\ {\left.{d}{x}\right.}+{c}\)
\(\displaystyle{y}_{{{x}}}=\int{\cos{{x}}}\cdot{x}\ {\left.{d}{x}\right.}+{c}\)
\(\displaystyle{x}{y}={x}\int{\cos{{x}}}\ {\left.{d}{x}\right.}-\int{\left[{\frac{{{d}{\left({x}\right)}}}{{{\left.{d}{x}\right.}}}}\int{\cos{{x}}}\ {\left.{d}{x}\right.}\right]}{\left.{d}{x}\right.}\)
\(\displaystyle{x}{y}={x}{\sin{{x}}}-\int{1}\cdot{\sin{{x}}}{\left.{d}{x}\right.}\)
\(\displaystyle{x}{y}={x}{\sin{{x}}}-\int{\sin{{x}}}{\left.{d}{x}\right.}\)
\(\displaystyle{x}{y}={x}{\sin{{x}}}-{\left(-{\cos{{x}}}\right)}+{c}\)
\(\displaystyle{x}{y}={x}{\sin{{x}}}+{\cos{{x}}}+{c}\)
Not exactly what you’re looking for?
Ask My Question
0
 
yotaniwc
Answered 2022-01-03 Author has 4798 answers
\(\displaystyle{y}'+{\frac{{{1}}}{{{x}}}}{y}={\cos{{x}}}\)
Integrating factor \(\displaystyle{P}{\left({x}\right)}={\frac{{{1}}}{{{x}}}}\)
\(\displaystyle{e}^{{\int{\frac{{{1}}}{{{x}}}}{\left.{d}{x}\right.}}}={e}^{{{\ln}{\left|{x}\right|}}}={x}\)
\(\displaystyle{x}{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}={x}{\cos{{x}}}\)
\(\displaystyle{\left[{x}{y}\right]}{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}={x}{\cos{{x}}}\)
\(\displaystyle{x}{y}=\int{x}{\cos{{x}}}\)
\(\displaystyle{x}{y}={x}{\sin{{x}}}+{\cos{{x}}}+{c}\)
\(\displaystyle{y}={\frac{{{x}{\sin{{x}}}+{\cos{{x}}}+{c}}}{{{x}}}}\)
\(\displaystyle{y}={\sin{{x}}}+{\frac{{{\cos{{x}}}}}{{{x}}}}+{\frac{{{c}}}{{{x}}}}\)
0

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more
...