\frac{dy}{dx}+5y=15

Chris Cruz 2022-01-02 Answered
\(\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}+{5}{y}={15}\)

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question

Expert Answer

Mollie Nash
Answered 2022-01-03 Author has 3028 answers
\(\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}+{5}{y}={15}\)
\(\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}={15}-{5}{y}\)
\(\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{15}-{5}{y}}}}={\left.{d}{x}\right.}\Rightarrow{\frac{{{\left.{d}{y}\right.}}}{{{5}{\left({3}-{y}\right)}}}}={\left.{d}{x}\right.}\)
\(\displaystyle\Rightarrow\int{\frac{{{\left.{d}{y}\right.}}}{{{3}-{y}}}}=\int{5}{\left.{d}{x}\right.}\)
\(\displaystyle\Rightarrow-{\log{{\left({3}-{y}\right)}}}={5}{x}+{\log{{c}}}\)
\(\displaystyle\Rightarrow-{5}{x}={\log{{\left({3}-{y}\right)}}}+{\log{{c}}}\)
\(\displaystyle={\log{{c}}}{\left({3}-{y}\right)}\)
\(\displaystyle\Rightarrow{c}{\left({3}-{y}\right)}={e}^{{-{5}{x}}}\)
\(\displaystyle{3}-{y}={\frac{{{e}^{{-{5}{x}}}}}{{{c}}}}\Rightarrow{y}={3}-{\frac{{{e}^{{-{5}{x}}}}}{{{c}}}}\)
\(\displaystyle{y}={3}-{\frac{{{e}^{{-{5}{x}}}}}{{{c}}}}\)
Not exactly what you’re looking for?
Ask My Question
0
 
alkaholikd9
Answered 2022-01-04 Author has 4212 answers
\(\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}+{5}{y}={15}\)
we use variable seperable method subtract both sides by 5y
\(\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}={15}-{5}{y}\)
\(\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}=-{5}{\left({y}-{3}\right)}\)
\(\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{y}-{3}}}}=-{5}{\left.{d}{x}\right.}\)
\(\displaystyle\int{\frac{{{\left.{d}{y}\right.}}}{{{y}-{3}}}}=\int-{5}{\left.{d}{x}\right.}\)
\(\displaystyle{\ln{{\left({y}-{3}\right)}}}=-{5}{x}+{C}\)
take exponent both sides
\(\displaystyle{e}^{{{\ln{{\left({y}-{3}\right)}}}}}={e}^{{-{5}{x}+{C}}}\)
\(\displaystyle{y}-{3}={C}{e}^{{-{5}{x}}}\)
Answer: \(\displaystyle{y}={3}+{C}{e}^{{-{5}{x}}}\)
0
karton
Answered 2022-01-09 Author has 8454 answers

\(\begin{array}{}\frac{dy}{dx}=15-5y \\\frac{dy}{dx}=-5(y-3) \\\frac{dy}{y-3}=-5dx \\\int \frac{dy}{y-3}=\int -5dx \\\ln (y-3)=-5x+C \\e^{\ln (y-3)}=e^{-5x+C} \\y-3=Ce^{-5x} \\y=3+Ce^{-5x} \end{array}\)

0

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-12-31
Solve the following homogeneous differential equations
\(\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}={\frac{{{x}-{y}}}{{{x}+{y}}}}\)
asked 2021-12-26
First-Order Linear Differential Equations; Solutions Suggested by the Equation
\(\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}={\left({x}+{y}+{1}\right)}^{{{2}}}\)
asked 2021-12-31
\(\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}=-{\frac{{{a}{x}+{b}{y}}}{{{b}{x}+{c}{y}}}}\)
asked 2021-12-19
Find the logistic differential equation \(\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}={k}{y}{\left({1}-{\frac{{{y}}}{{{L}}}}\right)}\)
asked 2021-12-12
Find \(\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}\) and \(\displaystyle{\frac{{{d}^{{2}}{y}}}{{{\left.{d}{x}\right.}^{{2}}}}}.\ {x}={e}^{{t}},\ {y}={t}{e}^{{-{t}}}\) For which values of t is the curve concave upward?
asked 2021-11-18
If \(\displaystyle{y}={\left({\frac{{{x}}}{{{x}+{1}}}}\right)}^{{{5}}}\), then \(\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}=\)
asked 2021-11-15
Solve the differential equation
\(\displaystyle{\frac{{{d}^{{2}}{y}}}{{{\left.{d}{x}\right.}^{{2}}}}}-{2}{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}+{4}{y}={e}^{{x}}{{\sin}^{{2}}{\left({\frac{{{x}}}{{{2}}}}\right)}}\)
...